Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
A B C M K H
Từ B, kẻ đường thẳng vuông góc với BC cắt AC tại M.
Từ giả thiết, ta có:
\(\cdot\) AH // BM (do cùng _I_ BC)
\(\cdot\) H là trung điểm của BC (\(\Delta ABC\) cân tại A có AH là đường cao)
Suy ra AH là đường trung bình của \(\Delta BMC\)
\(\Rightarrow BM=2AH\)
Xét \(\Delta BMC\) vuông tại B có BK là đường cao
\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BM^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\) (đpcm)
Câu 1:
A B C H E F
Xét \(\Delta ABC\) vuông tại A có AH là đường cao
\(\Rightarrow AB^2=BH\times BC\)
Xét \(\Delta HBA\) vuông tại H có HE là đường cao
\(\Rightarrow BH^2=BE\times AB\)
\(\Rightarrow BE^2=\dfrac{BH^4}{AB^2}=\dfrac{BH^4}{BH\times BC}=\dfrac{BH^3}{BC}\)
Chứng minh tương tự, ta có: \(CF^2=\dfrac{CH^3}{BC}\)
Suy ra \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\dfrac{BH}{\sqrt[3]{BC}}+\dfrac{CH}{\sqrt[3]{BC}}=\dfrac{BH+CH}{\sqrt[3]{a}}=\dfrac{a}{\sqrt[3]{a}}=\left(\sqrt[3]{a}\right)^2\)
+ cm \(BD\cdot AB=AH^2;CE\cdot AC=AH^2\)
\(\Rightarrow BD\cdot AB\cdot CE\cdot AC=AH^4\)
ma \(AB\cdot AC=BC\cdot AH\)
\(\Rightarrow dpcm\)
a) Ta có : \(AB^2+AC^2=6^2+8^2=100=BC^2\)
Theo ĐL Pytago đảo thì tam giác ABC vuông tại A.
=> đpcm.
b) Theo hệ thức lượng trong tam giác vuông ta có :
\(AB^2=BH\cdot BC\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\)(cm)
Vì tứ giác AMHN có 3 góc vuông nên tứ giác này là HCN.
Do đó \(MN=AH\)
Ta có : \(HC=BC-BH=10-3,6=6,4\)(cm)
Theo hệ thức lượng trong tam giác vuông ta có :
\(AH^2=BH\cdot HC\Leftrightarrow AH=\sqrt{BH\cdot HC}=\sqrt{3,6\cdot6,4}=4,8\)(cm)
c) Vì HM // AB nên theo ĐL Ta-lét ta có :
\(\frac{HC}{BC}=\frac{MC}{AC}=\frac{HM}{AB}\)
\(\Leftrightarrow\frac{6,4}{10}=\frac{MC}{8}=\frac{HM}{6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}MC=5,12\left(cm\right)\\HM=3,84\left(cm\right)\end{matrix}\right.\)
Ta có: \(AM=AC-MC=8-5,12=2,88\left(cm\right)\)
Ta có: \(S_{AMHN}=HM\cdot AM=3,84\cdot2,88=11,0592\left(cm^2\right)\)
d) Ta có: \(\widehat{ACB}+\widehat{HAC}=90^0\)
Mặt khác: \(\widehat{ANM}+\widehat{HAC}=\widehat{NAH}+\widehat{HAC}=90^0\)
Từ 2 điều trên ta có \(\widehat{ACB}=\widehat{ANM}\) (đpcm)
a, AB2+AC2=62+82=100
BC2=102=100
Do 100=100 nên tam giác ABC vuông
Tương tự: https://hoc24.vn/hoi-dap/question/467916.html?pos=1224467