Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left|\dfrac{3}{2}-\dfrac{7}{3}\right|^2+\dfrac{1}{4}=\dfrac{17}{18}\)
b: \(=\left|1-2-\dfrac{1}{3}\right|+\dfrac{5}{6}=1+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{13}{6}\)
c: \(=\left|\dfrac{3}{2}-\dfrac{7}{4}\right|-\dfrac{7}{4}=-\dfrac{3}{2}\)
d: =x-5+8-x=3
Bài 2 :
\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)
\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)
\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)
Đặt :
\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)
\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)
\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)
\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow3S< \dfrac{4}{3}\)
\(\Leftrightarrow S< \dfrac{4}{9}\)
\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)
\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)
\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)
\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)
\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)
Đặt:
\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)
\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)
\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)
\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)
\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)
Thay M vào A ta có:
\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)
\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)
Sửa đề:
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)....\left(\dfrac{1}{100^2}-1\right)\)
\(A=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)\left(\dfrac{1}{4^2}-\dfrac{4^2}{4^2}\right)....\left(\dfrac{1}{100^2}-\dfrac{100^2}{100^2}\right)\)
\(A=\dfrac{\left(1-2^2\right)}{2^2}.\dfrac{\left(1-3^2\right)}{3^2}.\dfrac{\left(1-4^2\right)}{4^2}....\dfrac{\left(1-100^2\right)}{100^2}\)
\(A=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}.\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}.\dfrac{\left(1-4\right)\left(1+4\right)}{4^2}......\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}\)
\(A=\dfrac{-3}{2^2}.\dfrac{-8}{3^2}.\dfrac{-15}{4^2}....\dfrac{-9999}{100^2}\)
Ta xét từ \(2\) đến \(100\) có: \(\dfrac{\left(100-2\right)}{1}+1=99\)
\(50\) là số lẻ nên tích trên là số âm
Hay \(-A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\)
\(-A=\dfrac{1.3.2.4.3.5....99.101}{2.2.3.3.4.4.....100.100}\)
\(-A=\dfrac{1.2.3....99}{2.3.4....100}.\dfrac{3.4.5....101}{2.3.4....100}\)
\(-A=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)
\(A=-\dfrac{101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)
Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)
Thay (1) vào đề bài:
\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)
\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)
\(\Rightarrow49x+\dfrac{16}{99}=50x\)
\(\Rightarrow x=\dfrac{16}{99}\)
Vậy \(x=\dfrac{16}{99}.\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)..............\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).............\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}.............\dfrac{-99}{100}.\dfrac{101}{100}\)
\(=\dfrac{-\left(1.2.3....99\right)}{2.3......100}.\dfrac{3.4...101}{2.3....100}\)
\(=\dfrac{-1}{100}.\dfrac{101}{2}\)
\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)
\(\Leftrightarrow A< \dfrac{-1}{2}\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}...\dfrac{-99}{100}.\dfrac{101}{100}\)
\(=\dfrac{-\left(1.2...99\right)}{2.3...100}.\dfrac{3.4...101}{2.3...100}=\dfrac{-1}{100}.\dfrac{101}{2}\)
\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)
\(\Rightarrow A< \dfrac{-1}{2}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right).....\left(\dfrac{1}{100^2}-1\right)\)
\(A=-\dfrac{3}{4}.-\dfrac{8}{9}.-\dfrac{15}{16}.....-\dfrac{9999}{10000}\)
\(A=\dfrac{-\left(1.3\right)}{2.2}.\dfrac{-\left(2.4\right)}{3.3}.\dfrac{-\left(3.5\right)}{4.4}......\dfrac{-\left(99.101\right)}{100.100}\)
Từ \(-1\) đến \(-99\) có: \(\left(99-1\right):1+1=99\)
Cộng thêm số \(-101\) tất cả có \(100\) số hạng
\(A=\dfrac{1.3.2.4.3.5....99.101}{2.2.3.3.4.4.....100.100}\)
\(A=\dfrac{1.2.3....99}{2.3.4....100}.\dfrac{3.4.5....101}{2.3.4....100}\)
\(A=\dfrac{1}{100}.\dfrac{101}{2}\)
\(A=\dfrac{101}{200}\)
\(\)
Lời giải:
\(A=\frac{1}{2}+(\frac{1}{2})^2+(\frac{1}{2})^3+...+(\frac{1}{2})^{98}+(\frac{1}{2})^{99}\)
\(\Rightarrow 2A=1+\frac{1}{2}+(\frac{1}{2})^2+...+(\frac{1}{2})^{97}+(\frac{1}{2})^{98}\)
Trừ theo vế:
\(2A-A=1-(\frac{1}{2})^{99}\)
\(A=1-(\frac{1}{2})^{99}< 1\)
Ta có đpcm.
Sửa lại đề : \(A>\dfrac{1}{2}\)
Dễ lắm để mik lo cho hjhj