Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:
\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)
Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)
=>điều cần chứng minh
\(VT\le\frac{a\left(b-1+1\right)}{2}+\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}+\frac{ab}{2}=ab\) ( Cosi ngược dấu )
:))
a p dg côsi \(a\sqrt{b-1}=a.1.\sqrt{b-1}\le a.\dfrac{1+b-1}{2}=\dfrac{ab}{2}\)
ttuong tu \(b\sqrt{a-1}\le\dfrac{ab}{2}\)
nên vt\(\le ab\)
dau = xảy ra a=b=2
Bài 1: (không dùng Cô-si) Bình phương hai vế, ta được:
\(c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(ac-2c^2+bc+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(0\le\left(ab-ac-bc+c^2\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(a-c\right)\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\)(đúng)
Vậy BĐT đúng. Xảy ra khi \(a=b=2c\)
Áp dụng bđt AM - GM ta có :
\(\sqrt{b-1}\le\frac{b-1+1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)
\(\sqrt{a-1}\le\frac{a-1+1}{2}=\frac{a}{2}\Rightarrow b\sqrt{a-1}\le\frac{ba}{2}\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)(đpcm)
b2 dễ tự lm
b2 x2 là x mũ 2. y2 là y mũ 2 .
yx−y=x2+2
yx−y−x2−2=0
x=−2−y+√y2−4y−8,−2−y−√y2−4y−8
x=−2−y+√y2−4y−8,−2−y−√y2−4y−8
x=−2−y+√y2−4y−8,−2−y−√y2−4y−8
k sau giúp tiếp
Áp dụng BĐT Cauchy Schwarz dạng Engel ta có:
\(\frac{2010}{\sqrt{2011}}+\frac{2011}{\sqrt{2010}}\ge\frac{\left(\sqrt{2010}+\sqrt{2011}\right)^2}{\sqrt{2011}+\sqrt{2010}}=\sqrt{2010}+\sqrt{2011}\left(đpcm\right)\)
:))
vào CHTT xem đi mr lazy giải rùi đó