Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn qua đã biết là đề sai rồi bạn
Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\ge\frac{3}{2}\)( GT abc = 1 )
\(\Leftrightarrow\frac{bc}{ab+ac}+\frac{ac}{ab+ac}+\frac{ab}{ac+bc}\ge\frac{3}{2}\). Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)ta được bất đẳng thức Nesbitt quen thuộc :
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)( em không chứng minh )
Vậy ta có đpcm
Đẳng thức xảy ra <=> x = y = z <=> a = b = c = 1
Do giả thiết abc=1abc=1 nên
\dfrac{1}{a^2\left(b+c\right)}=\dfrac{bc}{a^2bc\left(b+c\right)}=\dfrac{bc}{a\left(b+c\right)}=\dfrac{bc}{ab+ac}a2(b+c)1=a2bc(b+c)bc=a(b+c)bc=ab+acbc
Đặt x=bc,y=ca,z=abx=bc,y=ca,z=ab thì x,y,z>0x,y,z>0 và bất đẳng thức cần chứng minh trở thành bất đẳng thức quen thuộc
\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}y+zx+z+xy+x+yz≥23.
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
\(BDT\Leftrightarrow\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\ge\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+a}+\dfrac{1}{2c+a+b}\)
Áp dụng BĐT \(\dfrac{1}{nht}+\dfrac{1}{is}+\dfrac{1}{the}+\dfrac{1}{best}\ge\dfrac{16}{nht+is+the+best}\):
\(\dfrac{1}{2a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VP\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\)
\("="\Leftrightarrow a=b=c\)
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{9}{3a}+\frac{4}{2b}+\frac{1}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}=\frac{36}{3a+2b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
Trước hết, ta chứng minh được \(\forall m,n,p\in R;x,y,z>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Thật vậy: \(\forall m,n\in R;x,y>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\left(2\right)\)
\(\Leftrightarrow\frac{m^2y}{xy}+\frac{n^2x}{xy}\ge\frac{\left(m+n\right)^2}{x+y}\)
\(\Leftrightarrow\left(m^2y+n^2x\right)\left(x+y\right)\ge xy\left(m+n\right)^2\)
\(\Leftrightarrow m^2xy+m^2y^2+n^2x^2+n^2xy\ge xy\left(m^2+2mn+m^2\right)\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2\ge m^2xy+2mnxy+n^2xy\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2-m^2xy-2mnxy-n^2xy\ge0\)
\(\Leftrightarrow m^2y^2-2mnxy+n^2x^2\ge0\)
\(\Leftrightarrow\left(my-nx\right)^2\ge0\)(luôn đúng).
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}\)
Áp dụng bất dẳng thức (2), ta được:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n\right)^2}{x+y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\forall m,n,p\in R;x,y,z>0\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Theo đề bài, vì \(a,b,c>0\)nên áp dụng bất đẳng thức (1), ta được:
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{3^2}{3a}+\frac{2^2}{2b}+\frac{1^2}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}\)
\(\Leftrightarrow\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{6^2}{3a+2b+c}=\frac{36}{3a+2b+c}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\frac{3}{a}=\frac{2}{b}=\frac{1}{c}\Leftrightarrow6a=9b=18c\)
Vậy với \(a,b,c>0\)thì \(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{36}{3a+2b+c}\)