\(a,b,c\in R^+\) thỏa mãn \(a^3+b^3+c^3-3abc=1\)

Tì...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2021

Lời giải:

$a^3+b^3+c^3-3abc=1$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=1$

Đặt $a+b+c=x; a^2+b^2+c^2-ab-bc-ac=y$ với $x,y>0$

Khi đó, đề bài trở thành: Cho $x,y>0$ thỏa mãn: $xy=1$

Tìm min $P=\frac{x^2+2y}{3}$

Áp dụng BĐT AM-GM: 

$P=\frac{x^2+y+y}{3}\geq \frac{3\sqrt[3]{x^2y^2}}{3}=\frac{3}{3}=1$

Vậy $P_{\min}=1$

30 tháng 8 2019

E hổng biết cách này có đúng ko nữa:((

5

Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)

\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )

Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)

25 tháng 11 2017

Bạn ơi 2 phân số sau viết sai tử rùi kìa

Áp dụng bđt x^2+y^2 >= 2xy với mọi x,y

Xét : a^3/a^2+b^2 = a - ab^2/a^2+b^2 >= a-ab^2/2ab = a-b/2

Tương tự : b^3/b^2+c^2 >= b-c/2

c^3/c^2+a^2 >= c-a/2

=> A >= a+b+c-a/c-b/2-c/2 = a+b+c/2 = 3/2

Dấu "=" xảy ra <=> a=b=c và a+b+c=3

<=> a=b=c=1

Vậy Min A = 3/2 <=> a=b=c=1

k mk nha

25 tháng 11 2017

bạn ơi sao a^3= a-ab^2

5 tháng 12 2019

\(\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2\)

\(\ge a^4+b^4+c^4+a^2b^2-2abc^2\)

\(=\left(a^2+b^2+c^2\right)\left(a^4+b^4+\left(c^2-ab\right)^2\right)\)

\(\ge\left(a^3+b^3+c\left(c^2-ab\right)\right)^2\)

\(=\left(a^3+b^3+c^3-abc\right)^2\ge\left(a^3+b^3+c^3-3abc\right)^2=1\)

\(\Rightarrow B\ge1\)

1 tháng 3 2018

Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)

Vậy P min = 1 <=> a=b=c=1/căn(3)

^^

1 tháng 3 2018

ta có a^2+b^2+c^2=1

Mà a,b,c thuộc N

\(\Rightarrow\)TH1:a và b =0

TH2:b và c=0

TH3:c và a=0

nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu

Do đó không có P

23 tháng 6 2017

\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình

5 tháng 3 2019

Bài này ngược dấu hay sao ý:

Ta dự đoán dấu "=" xảy ra tại a = b = c =1

Áp dụng BĐT Cauchy-Schwarz: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\) (1)

Ta có: \(a^2+1\ge2a;2b^2+2\ge4b\Rightarrow a^2+2b^2+3=3c^2+3\ge2\left(a+2b\right)\)

\(\Rightarrow\frac{3c^2+3}{2}\ge a+2b\).Suy ra:\(\frac{9}{a+2b}\ge\frac{18}{3c^2+3}=\frac{6}{c^2+1}\) (2)

Ta sẽ c/m: \(\frac{6}{c^2+1}\ge\frac{3}{c}\).Ta có: \(VT=\frac{6}{c^2+1}=6\left(1-\frac{c^2}{c^2+1}\right)=6-\frac{6c^2}{c^2+1}\ge6-\frac{6c^2}{2c}=6-3c\) (3)

Ta sẽ c/m: \(6-3c\ge\frac{3}{c}\Leftrightarrow3c+\frac{3}{c}\le6\).Mặt khác,theo AM-GM

\(3c+\frac{3}{c}\ge2.\sqrt{3c.\frac{3}{c}}=2.3=6\Rightarrow\) mâu thuẫn?

5 tháng 3 2019

a,b,c nó đã dương đâu sao bn dùng đc cô si vậy