Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Bạn ơi 2 phân số sau viết sai tử rùi kìa
Áp dụng bđt x^2+y^2 >= 2xy với mọi x,y
Xét : a^3/a^2+b^2 = a - ab^2/a^2+b^2 >= a-ab^2/2ab = a-b/2
Tương tự : b^3/b^2+c^2 >= b-c/2
c^3/c^2+a^2 >= c-a/2
=> A >= a+b+c-a/c-b/2-c/2 = a+b+c/2 = 3/2
Dấu "=" xảy ra <=> a=b=c và a+b+c=3
<=> a=b=c=1
Vậy Min A = 3/2 <=> a=b=c=1
k mk nha
\(\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2\)
\(\ge a^4+b^4+c^4+a^2b^2-2abc^2\)
\(=\left(a^2+b^2+c^2\right)\left(a^4+b^4+\left(c^2-ab\right)^2\right)\)
\(\ge\left(a^3+b^3+c\left(c^2-ab\right)\right)^2\)
\(=\left(a^3+b^3+c^3-abc\right)^2\ge\left(a^3+b^3+c^3-3abc\right)^2=1\)
\(\Rightarrow B\ge1\)
Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)
Vậy P min = 1 <=> a=b=c=1/căn(3)
^^
ta có a^2+b^2+c^2=1
Mà a,b,c thuộc N
\(\Rightarrow\)TH1:a và b =0
TH2:b và c=0
TH3:c và a=0
nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu
Do đó không có P
\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình
Bài này ngược dấu hay sao ý:
Ta dự đoán dấu "=" xảy ra tại a = b = c =1
Áp dụng BĐT Cauchy-Schwarz: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\) (1)
Ta có: \(a^2+1\ge2a;2b^2+2\ge4b\Rightarrow a^2+2b^2+3=3c^2+3\ge2\left(a+2b\right)\)
\(\Rightarrow\frac{3c^2+3}{2}\ge a+2b\).Suy ra:\(\frac{9}{a+2b}\ge\frac{18}{3c^2+3}=\frac{6}{c^2+1}\) (2)
Ta sẽ c/m: \(\frac{6}{c^2+1}\ge\frac{3}{c}\).Ta có: \(VT=\frac{6}{c^2+1}=6\left(1-\frac{c^2}{c^2+1}\right)=6-\frac{6c^2}{c^2+1}\ge6-\frac{6c^2}{2c}=6-3c\) (3)
Ta sẽ c/m: \(6-3c\ge\frac{3}{c}\Leftrightarrow3c+\frac{3}{c}\le6\).Mặt khác,theo AM-GM
\(3c+\frac{3}{c}\ge2.\sqrt{3c.\frac{3}{c}}=2.3=6\Rightarrow\) mâu thuẫn?
Lời giải:
$a^3+b^3+c^3-3abc=1$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=1$
Đặt $a+b+c=x; a^2+b^2+c^2-ab-bc-ac=y$ với $x,y>0$
Khi đó, đề bài trở thành: Cho $x,y>0$ thỏa mãn: $xy=1$
Tìm min $P=\frac{x^2+2y}{3}$
Áp dụng BĐT AM-GM:
$P=\frac{x^2+y+y}{3}\geq \frac{3\sqrt[3]{x^2y^2}}{3}=\frac{3}{3}=1$
Vậy $P_{\min}=1$