K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=4\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)(vì a+b+c=abc)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

19 tháng 6 2016

(1/a+1/b+1/c)2=1/a^2+1/b^2+1/c^2+2/ab+2/bc+2/ac=1/a^2+1/b^2+1/c^2+2(1/ab+1/ac+1/bc)=1/a^2+1/b^2+1/c^2+2(c/abc+b/abc+a/abc)

                                                                                                                                   =1/a^2+1/b^2+1/c^2+2.1/abc.(a+b+c)

                                                                                                                                   =1/a^2+1/b^2+1/c^2+2.1

                                                                                                                                   =1/a^2+1/b^2+1/c^2+2=4

                                            Suy ra: 1/a^2+1/b^2+1/c^2=4-2=2(điều phải chứng minh)

                                                                                                                                  

3 tháng 1 2020

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1\)

\(\Leftrightarrow\frac{a+b+c}{abc}=1\Leftrightarrow a+b+c=abc\left(đpcm\right)\)

9 tháng 7 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ab+ac}{abc}=2\)

\(\frac{bc+ab+ac}{a+b+c}=2\Leftrightarrow bc+ab+ac=2\left(a+b+c\right)\)

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}\)( * )

Để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)thì \(2\left(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}\right)=2\Leftrightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=1\)

\(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{a^2bc+bac^2+ab^2c}{\left(abc\right)^2}=\frac{abc\left(a+b+c\right)}{\left(abc\right)^2}=\frac{a+b+c}{abc}\)

mà a + b + c = abc \(\Rightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{abc}{abc}=1\Leftrightarrow\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\)

thay \(\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\) vào ( * ) ta được \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\left(đpcm\right)\)

9 tháng 7 2019

\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{bc.ac+ab.ac+ab.bc}{ab.bc.ac}\)

\(=\frac{abc.\left(a+b+c\right)}{a^2b^2c^2}=\frac{a+b+c}{abc}=1\left(\text{vì }a+b+c=abc\right)\)

\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\text{ từ}\left(1\right)\)

Vậy ...

4 tháng 3 2018

Có : 1/a + 1/b + 1/c = 2

<=> ( 1/a + 1/b + 1/c )^2 = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 + 2.(1/ab + 1/bc + 1/ca) = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 = 4 - 2.(1/ab + 1/bc + 1/ca)

                                        = 4 - 2.(a+b+c)/abc

                                        = 4 - 2 = 2

=> ĐPCM

Tk mk nha

5 tháng 4 2017

a) đề thiếu òi bạn à            

25 tháng 5 2016

Ta có : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\) hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=4\)

Mà : \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{\left(a+b+c\right)}{abc}=1\)

Vì : \(\left(a+b+c=abc\right)\)

Nên bằng 1

Vì vậy : \(2\times\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\left(đpcm\right)\)

25 tháng 5 2016
ta có ( 1/a + 1/b + 1/c ) ^ 2 = 4 hay 1/a^2 + 1/ b^2 + 1/c^2 + 1/ab + 1/bc+ 1/ca = 4 mà 1/ab + 1/bc+ 1/ca = ( a + b + c ) / abc = 1 ( vì a + b + c =abc ) nên = 1 vì vậy 2 nhân (1/ab + 1/bc+ 1/ca )= 2 từ đêy suy ra đpcm
11 tháng 11 2019

từ a+b+c = 2  suy ra ( a+b+c)^2 =4 <=> a^2 +b^2 +c^2 + 2 (ab+ac+bc)=4  ma2 a^2 + b^2 +c^2 = 2 nên suy ra 2(ab+bc+ac)=2 <=> ab +ac+bc=1 , chia cả 2 vế cho abc khác 0 ta được 1/a+1/b+1/c = 1/abc (đpcm)

11 tháng 11 2019

Ta có: \(a+b+c=2\)

\(\Leftrightarrow\left(a+b+c\right)^2=4\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=4\)

\(\Leftrightarrow2+2\left(ab+bc+ac\right)=4\)(Vì \(a^2+b^2+c^2=2\))

\(\Leftrightarrow2\left(ab+bc+ac\right)=2\)

\(\Leftrightarrow ab+bc+ac=1\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\left(đpcm\right)\)