Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(Q=4x^2+5x-12x-15+2019\)
\(Q=4x^2-7x+2004\)
\(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\)
\(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)
\(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)
\(\Rightarrow Q\ge\frac{32255}{16}\)
\(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)
3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\) (do a+b=1)
\(T=4a^2-4ab+4a^2-6a^2-6b^2\)
\(T=-2a^2-4ab-2b^2\)
\(T=-2\left(a^2+2ab+b^2\right)\)
\(T=-2\left(a+b\right)^2\)
\(T=-2.1^2=-2.1=-2\) (do a+b=1)
ta có \(P=a^4+b^4+2-2-ab\)
AD BĐT cô si ta có
\(a^4+1\ge2a^2\) dấu = khi a=1
\(b^4+1\ge2b^2\) dấu = khi b =1
Khi đó \(P\ge2a^2+2b^2-2-ab\)
\(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)
\(P\ge4-3ab\)( Thay \(a^2+b^2+ab=3\)vào ) (1)
mặt khác \(a^2+b^2\ge2ab\)
khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)
=> \(ab\le1\) (2)
từ (1) và (2)
ta có \(P\ge4-3ab\ge4-3=1\)
vậy P đạt GTNN là 1 khi a=b=1
Ta có :
A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)
= a2(a+b+c) + b2(a+b+c)+c2(a+b+c)
= (a+b+c)(a2+b2+c2)
V ới a+b+c = 1 thì A = a2+b2+c2
Ta có a2+b2 ≥2ab
a2+ c2 ≥ 2ac
b2 + c2 ≥ 2bc
2(a2 + b2 +c2) ≥ 2(ab + bc + ac)(1)
Cộng thêm vào hai vế của (1) với a2 + b2 + c2
⇔ 3(a2 + b2 + c2) ≥ (a+b+c)2
⇔ 3A ≥ 1/3
⇔ A≥1/3 Dấu “ = ” xảy ra khi a= b =c
Mà a+b+c = 1 nên a =b=c = 1/3
Do đó A đạt giá trị nhỏ nhất là 1/3khi a =b=c = 1/3
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
\(1.x^2-4x+4=8\left(x-2\right)^5\)
\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)
\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)
\(=4a^2-4ab+3b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a+b\right)^2=-2\)
Vì \(a+b=3\)
\(\Rightarrow\left(a+b\right)^2=9\)
\(\Leftrightarrow a^2+b^2+2ab=9\)
\(\Leftrightarrow a^2+b^2=7\)
Vì \(a+b=3\)
\(\Leftrightarrow\left(a+b\right)^3=27\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=27\)
\(\Leftrightarrow a^3+b^3=18\)