K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Vì \(a+b=3\)

\(\Rightarrow\left(a+b\right)^2=9\)

\(\Leftrightarrow a^2+b^2+2ab=9\)

\(\Leftrightarrow a^2+b^2=7\)

24 tháng 8 2019

Vì \(a+b=3\)

\(\Leftrightarrow\left(a+b\right)^3=27\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=27\)

\(\Leftrightarrow a^3+b^3=18\)

18 tháng 10 2019

Mình đang cần gấp . Đảm bảo k trả đầy đủ + kb :'>

18 tháng 10 2019

2.    \(Q=\left(x-3\right)\left(4x+5\right)+2019\)

        \(Q=4x^2+5x-12x-15+2019\)   

        \(Q=4x^2-7x+2004\)  

        \(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\) 

        \(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)  

        \(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)  

        \(\Rightarrow Q\ge\frac{32255}{16}\) 

         \(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)

3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)  

   \(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\) 

   \(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)  (do a+b=1)

   \(T=4a^2-4ab+4a^2-6a^2-6b^2\) 

   \(T=-2a^2-4ab-2b^2\)

   \(T=-2\left(a^2+2ab+b^2\right)\) 

   \(T=-2\left(a+b\right)^2\)

   \(T=-2.1^2=-2.1=-2\) (do a+b=1)

   

3 tháng 6 2019

ta có \(P=a^4+b^4+2-2-ab\)

     AD BĐT cô si ta có 

\(a^4+1\ge2a^2\) dấu = khi a=1

\(b^4+1\ge2b^2\) dấu = khi b =1 

Khi đó  \(P\ge2a^2+2b^2-2-ab\)

        \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

     \(P\ge4-3ab\)(  Thay \(a^2+b^2+ab=3\)vào )   (1)

 mặt khác \(a^2+b^2\ge2ab\) 

khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

=>   \(ab\le1\)  (2)

từ (1) và (2) 

ta có \(P\ge4-3ab\ge4-3=1\)

 vậy P đạt GTNN là 1 khi a=b=1

28 tháng 6 2016

Ta có :
A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)
    = a2(a+b+c) + b2(a+b+c)+c2(a+b+c)
    = (a+b+c)(a2+b2+c2)
V ới a+b+c = 1 thì A = a2+b2+c2
Ta  có a2+b2 ≥2ab
    a2+ c2 ≥ 2ac
    b2 + c2 ≥ 2bc
2(a2 + b2 +c2) ≥ 2(ab + bc + ac)(1)
Cộng thêm vào hai vế của (1) với a2 + b2 + c2
⇔ 3(a2 + b2 + c2) ≥ (a+b+c)2
⇔ 3A ≥ 1/3
⇔ A≥1/3 Dấu “ = ” xảy ra khi a= b =c
Mà a+b+c = 1 nên a =b=c = 1/3
 Do đó A đạt giá trị nhỏ nhất là 1/3khi a =b=c = 1/3

 

4 tháng 2 2021

 \(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)

\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)          

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)

Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

5 tháng 10 2019

\(1.x^2-4x+4=8\left(x-2\right)^5\)

\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)

\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)

5 tháng 10 2019

\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)

\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)

\(=4a^2-4ab+3b^2-6a^2-6b^2\)

\(=-2a^2-4ab-2b^2\)

\(=-2\left(a+b\right)^2=-2\)