Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a+b+c=0\) hoặc \(a=b;b=c;c=a\) (bn tự chứng minh)
Với \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Ta có: \(A=\left(\dfrac{a}{b}+1\right).\left(\dfrac{b}{c}+1\right)\left(\dfrac{c}{a}+1\right)\)
\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)
Với \(a=b;b=c;c=a\)
\(\Rightarrow A=\dfrac{a+b}{b}.\dfrac{b+c}{c}+\dfrac{c+a}{a}=\dfrac{2b}{b}.\dfrac{2c}{c}.\dfrac{2a}{a}=8\)
\(a^3+b^3+c^3=3abc\\ \Rightarrow a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\\ \Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\left(a+b+c\ne0\right)\\ \Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\\ \Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\\ \Rightarrow a=b=c\\ \Rightarrow B=\dfrac{2}{a}.\dfrac{2}{b}.\dfrac{2}{c}=\dfrac{8}{abc}\)
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\end{matrix}\right.\)
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
\(M=\dfrac{\left(a+b\right)}{b}.\dfrac{\left(b+c\right)}{c}.\dfrac{\left(a+c\right)}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{-abc}{abc}=-1\)
TH2: \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\Leftrightarrow a=b=c\)
\(M=\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)=2.2.2=8\)
Áp dụng bđt AM-GM cho 2 số dương:
\(a^3+b^3+c^3\ge3abc\)
Dấu "=" xảy ra khi:
\(a=b=c\)
Khi đó:
\(\left\{{}\begin{matrix}\dfrac{a}{b}=1\\\dfrac{b}{c}=1\\\dfrac{a}{c}=1\end{matrix}\right.\) \(\Leftrightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a+b+c=0\) hoặc \(a=b=c\) (bn tự chứng minh)
+) \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;a+c=-b\)\(\Rightarrow A=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)
\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)
+) \(a=b=c\Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\left(1\right)\)
C/m : \(a^2+b^2+c^2-ab-bc-ac\ge0\)
Giả sử điều phải c/m là đúng , ta có :
\(a^2+b^2+c^2-ab-bc-ac\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( điều này luôn đúng )
\(\Rightarrow\) điều giả sử là đúng
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Lại có : \(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)
\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\)
\(=\dfrac{-abc}{abc}=-1\)
Vậy \(A=-1\)
a,ta có: \(a^3+b^3+c^3=3abc\)
<=>\(a^3+b^3+c^3-3abc=0\)
<=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
<=>\(\left(a+b+c\right)2\left(a^2-ab+b^2-ac-bc+c^2\right)=0\)
<=>\(\left(a+b+c\right)\left(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right)=0\)
=>a=b,a=c,b=c
=>a=b=c
thay a=b=c vào P ta đc
\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Câu 1:
a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(tự nhân lại rồi phân tích)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
+)Xét a+b+c=0\(\Rightarrow P=\dfrac{b+a}{b}\cdot\dfrac{c+b}{c}\cdot\dfrac{a+c}{a}=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=-1\)
+Xét \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=2\cdot2\cdot2=8\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\)\(\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)
\(\Rightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
TH1: \(a+b+c=0\Rightarrow a=-\left(b+c\right);b=-\left(a+c\right);c=-\left(a+b\right)\)
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(M=\left(1+\dfrac{-b-c}{b}\right)\left(1+\dfrac{-c-a}{c}\right)\left(1+\dfrac{-a-b}{a}\right)\)
\(M=\left(1-1-\dfrac{c}{b}\right)\left(1-1-\dfrac{a}{c}\right)\left(1-1-\dfrac{b}{a}\right)\)
\(M=\left(-\dfrac{c}{b}\right)\left(-\dfrac{a}{c}\right)\left(-\dfrac{b}{a}\right)=-1\)
TH2: \(a=b=c\)
\(M=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Do \(a^3+b^3+c^3=3abc\).
Nên ta dễ dàng cm đc: \(a+b+c=0\)
\(\Rightarrow\)a + b = -c; b+c = -a; a + c = -b (1)
\(\Rightarrow M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
=\(\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)(2)
Thay (1) vào (2) được:
\(M=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)
Chúc các bn học tốt