K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

phân tích tử thức: 

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Phân tích mẫu thức:\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(ab^2-a^2b+bc^2-b^2c+ca^2-c^2a\right)\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(\Rightarrow A=\frac{3\left(a^2+b^2+c^2-ab-bc-ca\right)}{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

28 tháng 11 2017

a 3 + b 3 + c 3 = 3abc⇔a 3 + b 3 + c 3 − 3abc = 0

⇔ a + b 3 − 3ab a + b + c 3 − 3abc = 0

⇔ a + b 3 + c 3 − 3ab a + b + 3abc = 0

⇔ a + b + c a 2 + b 2 + c 2 + 2ab − ac − bc − 3ab a + b + c = 0

⇔ a + b + c a 2 + b 2 + c 2 − ab − bc − ac = 0

⇔ 2 a + b + c a − b 2 + b − c 2 + c − a /2 = 0

Vì a,b,c > 0 nên a+b+c > 0

Do đó : a − b 2 = 0

             b − c 2 = 0 

             c − a 2 = 0

⇒a = b = c

k cho mk nha

11 tháng 11 2017

\(\frac{a^3+b^3-c^3+3abc}{\left(a-b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}=\frac{\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc}{2a^2+2b^2+2c^2-2ab+2bc+2ac}\)

                                                                     \(=\frac{\left(a+b-c\right)\left[\left(a+b\right)^2+c\left(a+b\right)+c^2\right]-3ab\left(a+b-c\right)}{2a^2+2b^2+2c^2-2ab+2bc+2ac}\)

                                                                     \(=\frac{\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)}{2\left(a^2+b^2+c^2-ab+bc+ac\right)}\)

                                                                       \(=\frac{a+b-c}{2}\)

6 tháng 7 2017

a^3 +c^3 = (a+c). (a^2 -a.c+c^2)

 = (a+c)^3 -3 ac.(a+c)

 => a^3+c^3-3abc+b^3 =(a+c)^3-3ac (a+c)-3abc +b^3

=(a+c)^3+b^3 -3ac (b+(a+c))

=(a+c+b). ((a+c)^2-(a+c).b+b^2) -3ac (a+c+b)

 =(a+c+b)^3-3(a+c)b. (a+c+b)-3ac (a+c+b)

 =(a+c+b)((a+c+b)^2  -3ab-3bc-3ac) (1)

 (a-b)^2 + (b-c)^2 +(a-c)^2 

 = 2a^2 +2b^2+2c^2 -2ab-2bc-2ac

 =2 (a^2+b^2+c^2-ac-ab-bc)

 =2((a+b)^2-3ab +c^2 -ac-bc)

 =2 ((a+b+c)^2-2(ac+bc)-3ab-ac-bc)

 =2 (( a+c+b)^2 -3ab-3bc -3ac) (2)

Từ (1),(2) =>(a^3+b^3+c^3-3abc)/((a-b)^2

+(b-c)^2+(c-a)^2)

=(a+b+c)/2 

19 tháng 12 2016

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

19 tháng 12 2016

Sửa lại: \(\frac{a-c}{b+c}\)

6 tháng 12 2018

Sửa đề: \(P=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(P=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(P=\frac{\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2}{a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2}\)

\(P=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)

\(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc+3ab\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)

\(P=\frac{5\left(a^2+b^2+c^2-ab-ac-bc\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)( a+b+c=0)

\(P=\frac{5}{2}\left[\left(a^2+b^2+c^2-ab-bc-ca\right)\ne0\right]\)

Ta có \(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2-ab+b^2+b^2-bc+c^2+c^2-ac+a^2}\)

\(=\frac{5\left(...\right)}{2\left(...\right)}=\frac{5}{2}\)

31 tháng 10 2016

cái áp dụng là Schawrts chứ

12 tháng 8 2020

BĐT sau đây vẫn đúng: \(\Sigma a\left(a-c\right)\left(a-b\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)+\frac{16\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b+c\right)^3}\)

3 tháng 11 2019

\(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-c\right)\left(b-a\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^3\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^3\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{c^3\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=a+b+c\)

7 tháng 1 2017

\(a^3+b^3+c^3=3abc+\left(a+b+c\right)\left(a^2+b^2+c^2-\left(ab+bc+ac\right)\right)\)

=> a+b+c=0

\(\Rightarrow M=\frac{abc}{\left(-c\right)\left(-a\right)\left(-b\right)}=-1\)

7 tháng 1 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Với \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow M=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{abc}{\left(-c\right)\left(-a\right)\left(-b\right)}=-1\)

Với \(a^2+b^2+c^2-ab-bc-ca=0\)

Ta thấy đây là 1 bất đẳng thức quen thuộc

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi a = b = c

\(\Rightarrow M=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{a^3}{2a.2a.2a}=\frac{1}{8}\)