Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)
\(=3+\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\)(1)
Theo BĐT AM-GM: \(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\right]\ge\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)
Tương tự: \(\frac{1}{2}\left[\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)
\(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{a^2}}\)
Cộng theo vế 3 BĐT trên rồi thay vào 1 ta sẽ thu được đpcm.
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng lại:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ca}{2}\)
\(\Rightarrow VT\ge a+b+c\)
Mặt khác:
\(\frac{9}{a+b+c}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\Rightarrow9\le3\left(a+b+c\right)\Rightarrow a+b+c\ge3\)
Khi đó:
\(VT\ge a+b+c\ge3\left(đpcm\right)\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Đề khắm vậy -_- a + b = 3 - c thì viết luôn thành a + b + c = 3 cho rồi .... bày đặt
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(x;y;z>0\right)\)
\(VT=a^3+b^3+c^3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^3+b^3+c^3+\frac{18}{a+b+c}\)
\(=a^3+b^3+c^3+6\)
Áp dụng bđt Cô-si cho 3 số ta đc
\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}=3a\)
\(b^3+1+1\ge3b\)
\(c^3+1+1\ge3c\)
Cộng từng vế vào ta được
\(VT\ge a^3+b^3+c^3+6\ge3\left(a+b+c\right)=\left(a+b+c\right)^2\)
Lại có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(Phá ngoặc + chuyển vế -> tổng bình phương)
\(\Rightarrow VT\ge3\left(ab+bc+ca\right)\)(Đpcm)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy ....
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
a) BĐT (1) \(\Leftrightarrow xyz\le\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8}\)
BĐT này luôn đúng theo Cô-si :
\(VP\ge\frac{2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{xz}}{8}=\frac{8xyz}{8}=xyz\)
Dấu "=" khi tam giác ABC đều
b) BĐT (2) \(\Leftrightarrow\frac{\frac{x+y}{2}}{z}+\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}\ge3\)
\(\Leftrightarrow\frac{x+y}{2z}+\frac{y+z}{2x}+\frac{x+z}{2y}\ge3\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}\right)\ge3\)
\(\Leftrightarrow\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}\ge6\)
Áp dụng bđt Cô-si 3 số :
\(VT\ge3\sqrt[3]{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}}=3\sqrt[3]{\frac{8xyz}{xyz}}=3\cdot\sqrt[3]{8}=3\cdot2=6\)( theo kết quả câu a )
=> đpcm
Dấu "=" khi tam giác ABC đều
c) Áp dụng bđt Cauchy-Schwarz:
\(VT\ge\frac{\left(a+b+c\right)^2}{a+b-c+b+c-a+a+c-b}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" khi tam giác ABC đều
sai đề ?
đúng bạn ơi