K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Ta có :

\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)

\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)

\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)

\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)

\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)

6 tháng 3 2020

\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)

\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)

\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)

\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)

\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)

\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)

=> A chia 19 dư 0

28 tháng 12 2019

\(A=1+2+2^2+...+2^{2019}+2^{2020}\)

\(A=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{2018}+2^{2019}+2^{2020}\right)\)

\(A=3+2^2\left(1+2+2^2\right)+...+2^{2018}\left(1+2+2^2\right)\)

\(A=3+2^2.7+....+2^{2018}.7\)

\(A=3+7\left(2^2+....+2^{2018}\right)\)

Vì 3 ko chia hết cho 7

=> A ko chia hết cho 7

=> A dư 3

kiến thức

hay dấu hiệu chia hết cho 7

là xong thui bạn

14 tháng 9 2020

\(\left(-\frac{5}{12}\right):\frac{7}{3}-\left(-\frac{5}{12}\right):\frac{7}{4}=\left(-\frac{5}{12}\right):\left(\frac{7}{3}-\frac{7}{4}\right)=\left(-\frac{5}{12}\right):\frac{7}{12}=-\frac{5}{7}\)

\(\left[\left(\frac{2}{5}\right)^0\right].\frac{19}{13}-\left(\frac{7}{3}\right)^{2019}.\frac{3}{7}^{2019}\)

\(=\left(\frac{2}{5}\right)^0.\frac{19}{13}-\left(\frac{7}{3}.\frac{3}{7}\right)^{2019}\)

\(=1.\frac{19}{13}-1^{2019}\)

\(=1.\frac{19}{13}-1\)

\(=\frac{19}{13}-1\)

\(=\frac{6}{13}\)

14 tháng 9 2020

                                                            Bài giải

a, \(\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)

\(=\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)

\(=\left(-\frac{5}{12}\right)\cdot\frac{3}{7}-\left(-\frac{5}{12}\right)\cdot\frac{4}{7}\)

\(=\frac{-15}{84}+\frac{20}{84}=\frac{5}{84}\)

b, \(\left[\left(\frac{2}{5}\right)^0\right]^{2020}\cdot\frac{19}{37}-\left(\frac{7}{3}\right)^{2019}\cdot\frac{3^{2019}}{7}\)

\(=1^{2020}\cdot\frac{19}{37}-\frac{7^{2019}}{3^{2019}}\cdot\frac{3^{2019}}{7}\)

\(=\frac{19}{37}-7^{2018}\)

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

8 tháng 10 2017

a) \(A=7+7^2+...+7^{99}\)

\(7A=7^2+7^3+...+7^{100}\)

\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)

\(6A=7^{100}-7\)

\(A=\frac{7^{100}-7}{6}\)

Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)

b) \(A=7+7^2+...+7^{99}\)

\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)

\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)

\(A=399+...+7^{96}.399\)

\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)

8 tháng 10 2017

Còn bn nào giải đc phần c không 

27 tháng 11 2017

Dư 1 nha bạn . 

27 tháng 11 2017
các bạn giải chi tiết giúp mik nha
28 tháng 10 2015

Ta có: A=20+21+22+23+…+22009+22010

=>A=(20+21+22)+…+(22008+22009+22010)

=>A=(20+21+22)+…+22008.(20+21+22)

=>A=7+…+22008.7

=>A=(1+…+22008).7 chia hết cho 7

=>A chia hết cho 7

=>A chia 7 dư 0

13 tháng 8 2016

\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)

\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)

\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)

\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)

\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)

các câu còn lại tương tự thôi

13 tháng 8 2016

B1 c2

dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)

chỗ phía dưới là 1 nha nó bị che