K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

a) \(a_n+1=\left(1+2+3+...+n\right)+1=\dfrac{n\left(n+1\right)}{2}+1\)

b) Ta có:

\(a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}=\dfrac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\dfrac{\left(n+1\right)\left(2n+2\right)}{2}=\left(n+1\right)^2\)

Vậy an + an + 1 là số chính phương

3 tháng 1 2019

a,

\(a_n+1=1+2+...+n+1=\dfrac{n\left(n+1\right)}{2}+1=\dfrac{n\left(n+1\right)+2}{2}\)

b,

\(a_n+a_{n+1}=2a_n+n+1\)

\(=\dfrac{n\left(n+1\right)}{2}\cdot2+n+1=n\left(n+1\right)+\left(n+1\right)\)

\(=\left(n+1\right)^2\) là số chính phương

AH
Akai Haruma
Giáo viên
2 tháng 10 2018

Lời giải:

a) Công thức quen thuộc

\(a_n=1+2+3+...+n=\frac{n(n+1)}{2}\)

\(\Rightarrow a_n+1=\frac{n(n+1)}{2}+1\)

b) Ta có:

\(a_{n+1}=1+2+...+n+(n+1)=\frac{(n+1)(n+1+1)}{2}=\frac{(n+1)(n+2)}{2}\)

\(\Rightarrow a_n+a_{n+1}=\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+n+2)}{2}=\frac{2(n+1)(n+1)}{2}=(n+1)^2\)

Vậy \(a_n+a_{n+1}\) là một số chính phương.

AH
Akai Haruma
Giáo viên
10 tháng 3 2019

Lời giải:

Ta có công thức quen thuộc:

\(a_n=1+2+3+..+n=\frac{n(n+1)}{2}\)

\(a_{n+1}=1+2+3+...+n+(n+1)=\frac{(n+1)(n+2)}{2}\)

Do đó:

\(a_n+a_{n+1}=\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+n+2)}{2}=(n+1)(n+1)=(n+1)^2\) là số chính phương với mọi số tự nhiên $n\geq 1$

Vậy $a_n+a_{n+1}$ là số chính phương.

Y
21 tháng 3 2019

\(a_n+a_{n+1}\)

\(=\left(1+2+3+...+n\right)+\left(1+2+3+...+n+1\right)\)

\(=\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)

\(=\frac{n^2+n}{2}+\frac{n^2+3n+2}{2}\)

\(=\frac{2n^2+4n+2}{2}\)

\(=n^2+2n+1=\left(n+1\right)^2\) là số chính phương

NV
12 tháng 4 2019

Đây là toán 8 thật à :(((((

\(a_{n+2}-a_{n+1}=a_{n+1}-a_n+1\)

Đặt \(b_n=a_{n+1}-a_n\Rightarrow b_{n+1}=a_{n+2}-a_{n+1}\)

\(\Rightarrow b_{n+1}=a_{n+1}-a_n+1=b_n+1\)

Lại có \(b_1=a_{1+1}-a_1=a_2-a_1=2\)

\(\Rightarrow b_2=b_1+1\)

\(\Rightarrow b_3=b_2+1\)

...

\(\Rightarrow b_n=b_{n-1}+1\)

Cộng vế với vế:

\(b_2+b_3+...+b_{n-1}+b_n=b_1+b_2+...+b_{n-1}+1+1+...+1\) (n-1 số 1)

\(\Rightarrow b_n=b_1+1\left(n-1\right)=n+1\)

\(\Rightarrow a_{n+1}-a_n=n+1\)

Từ đó \(\Rightarrow a_{n+1}=a_n+n+1\)

\(\Rightarrow a_n=a_{n-1}+n\)

\(\Rightarrow a_{n-1}=a_{n-2}+n-1\)

...

\(\Rightarrow a_3=a_2+3\)

\(\Rightarrow a_2=a_1+2\)

Lại cộng vế với nhau:

\(a_{n+1}+a_n+...+a_3+a_2=a_n+a_{n-1}+...+a_2+a_1+\left(n+1\right)+n+...+2\)

\(\Rightarrow a_{n+1}=a_1+\left(n+1\right)+n+...+2\)

\(\Rightarrow a_{n+1}=\left(n+1\right)+n+...+2+1\)

\(\Rightarrow a_n=n+n-1+...+1=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow a_{n+2}=\frac{\left(n+2\right)\left(n+3\right)}{2}\)

\(\Rightarrow4a_{n+2}a_n+1=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\) (đpcm)

2 tháng 8 2023

\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow a_{n+1}=1+2+3+...+n+\left(n+1\right)=\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)

\(\Rightarrow a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)

\(=\dfrac{\left(n+1\right)}{2}.\left(n+n+2\right)=\dfrac{\left(n+1\right)}{2}.\left(2n+2\right)\)

\(=\dfrac{\left(n+1\right)}{2}.2\left(n+1\right)=\left(n+1\right)^2\)

\(\Rightarrow dpcm\)

2 tháng 8 2023

ko bt

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.Link : http://olm.vn/hoi-dap/question/715065.htmlThấy Online Math chọn thì không nỡ bỏ quên :vĐề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần "...
Đọc tiếp

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)

0