Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{100}}{a_1}=\frac{a_1+a_2+...+a_{100}}{a_1+a_2+...+a_{100}}=1\)\(\Rightarrow\)\(a_1=a_2=...=a_{100}\)
\(\Rightarrow\)\(M=\frac{a_1^2+a_2^2+a_3^2+...+a_{100}^2}{\left(a_1+a_2+a_3+...+a_{100}\right)^2}=\frac{100a_1^2}{100^2a_1^2}=\frac{1}{100}\)
a) A = \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)với A .Ta được :
A .\(\frac{1}{7^2}\)= \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
Ta có : \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A.\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)
b)Giả sử a1 >a2 > a3 ...> a2015 nên a1 > a2015
Theo đề ra ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< \frac{1}{2016}+\frac{1}{2015}+...+1=A\)
A< \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)\)có 2007 số \(\frac{1}{8}\)
Mà \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)< 1+1+...+\frac{2018}{8}\)
Giả sử trong 2015 số nguyên dương đã cho không có số nào bằng nhau .
Và a1 < a2 < a3 < ... < a2015
Ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2011}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+1007=1008\)
=> Giả sử là sai => ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau ( đpcm )
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{99}}{a_{100}}=\frac{a_{100}}{a_1}\) chứ!
Có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+....+a_{2009}}\)(tính chất dãy tỉ số bằng nhau)
=> \(\left(\frac{a_1}{a_2}\right)^{2008}=\left(\frac{a_2}{a_3}\right)^{2008}=...=\left(\frac{a_{2008}}{a_{2009}}\right)^{2008}=\left(\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}\)
\(=\frac{a_1.a_2.....a_{2008}}{a_2.a_3.....a_{2009}}=\frac{a_1}{a_{2009}}\)
=> \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+....+a_{2009}}\right)^{2008}\)
=> Đpcm
Ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2008}{a2009}=\frac{\left(a1+a2+...+a2008\right)}{\left(a2+a3+...+a2009\right)}\)
\(\Rightarrow\left(\frac{a1}{a2}\right)^{2008}=\left(\frac{a2}{a3}\right)^{2008}=..=\left(\frac{a2008}{a2009}\right)^{2008}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
\(\Rightarrow\frac{a1.a2....a2008}{a2.a3...a2009}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
\(\Rightarrow\frac{a1}{a2009}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)
=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)
<=> \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
Link bài tham khảo nè bạn
vào câu hỏi tương tự ấy. có đó.