K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=2+\frac{a}{b}+\frac{b}{a}\) (1)

Không mất tính tổng quát, ta giả sử \(1\le a\le b\le2\). Ta có \(\frac{a}{b}\le1\)\(2\ge b\) , \(a\ge1\) \(\Rightarrow2a\ge b\Rightarrow\frac{a}{b}\ge\frac{1}{2}\) \(\Rightarrow\frac{1}{2}\le\frac{a}{b}\le1< 2\)

Ta có : \(\left(2-\frac{a}{b}\right)\left(\frac{1}{2}-\frac{a}{b}\right)\le0\Rightarrow1-\frac{2a}{b}-\frac{a}{2b}+\frac{a^2}{b^2}\le0\)

\(\Rightarrow1+\frac{a^2}{b^2}\le\frac{5}{2}.\frac{a}{b}\)\(\Rightarrow\frac{a}{b}+\frac{b}{a}\le\frac{5}{2}\) (2) (chia hai vế cho \(\frac{a}{b}\) ) 

Từ (1) và (2) ta suy ra \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\le2+\frac{5}{2}=\frac{9}{2}\)

20 tháng 11 2017

a + b a 1 + b 1 = 2 + b a + a b (1) Không mất tính tổng quát, ta giả sử 1 ≤ a ≤ b ≤ 2. Ta có b a ≤ 1; 2 ≥ b , a ≥ 1 ⇒2a ≥ b⇒ b a ≥ 2 1 ⇒ 2 1 ≤ b a ≤ 1 < 2 Ta có : 2 − b a 2 1 − b a ≤ 0⇒1 − b 2a − 2b a + b 2 a 2 ≤ 0 ⇒1 + b 2 a 2 ≤ 2 5 . b a ⇒ b a + a b ≤ 2 5 (2) (chia hai vế cho b a ) Từ (1) và (2) ta suy ra a + b a 1 + b 1 ≤ 2 + 2 5 = 2 9 (

mk nghĩ vậy

13 tháng 11 2019

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)

Theo đề bài ta có

\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)

Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)

Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)

Khi đó BĐT <=>

\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)

<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)

Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị

17 tháng 2 2020

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)

Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)

Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)

Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)

\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Ta lại có 

\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)

Tương tự \(b^2\le3b-2;c^2\le3c-2\)

\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)

\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)

Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)

\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)

Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)

\(-\left[4\left(a+b+c\right)-12\right]=0\)

\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\le a^2+b^2+c^2+ab+bc+ca\)

hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)

Từ giả thiết \(1\le a\le2\),suy ra 

\(\left(a-1\right)\left(a-2\right)\le0\)

\(\Leftrightarrow a^2-3a+2\le0\)

Tương tự \(b^2-3b+2\le0\)

\(\Rightarrow a^2+b^2-3\left(a+b\right)+4\le0\)

Do đó 

\(P=a^2+b^2-3\left(a+b\right)+4-\left(a+\frac{1}{a}\right)-\left(\frac{b}{4}+\frac{1}{b}\right)\)

\(P=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)^2-\left(\frac{\sqrt{b}}{2}-\frac{1}{\sqrt{b}}\right)^2-3\le-3\)

Đẳng thức xảy ra khi\(\hept{\begin{cases}\sqrt{a}=\frac{1}{\sqrt{a}}\\\frac{\sqrt{b}}{2}=\frac{1}{\sqrt{b}}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}\)

Vậy \(max_P=-3\Leftrightarrow a=1;b=2\)

P/ s : Các bạn tham khảo nha

15 tháng 10 2017

từ giả thiết 1< (hoặc =)< (hoặc =) 2 

=>(a-1) (a-2) <(hoặc=)0

<=>a^2-3a+2<( hoặc=)0

Nhớ cho mình nha

19 tháng 5 2017

\(\frac{\left(a+b\right)^2}{a^2+b^2}\)\(\frac{a^2+b^2+2ab}{a^2+b^2}\)= 1 + \(\frac{2ab}{a^2+b^2}\)

Ta có: a,b > 0

a2 + b2 >= 2\(\sqrt{a^2b^2}\) = 2ab

Tỉ số \(\frac{2ab}{a^2+b^2}\)càng nhỏ khi |a - b| càng lớn.

Mà 1 <= a,b <= 2

=> Max|a - b| = 1 khi a = 2, b = 1 hoặc a = 1, b = 2

Vậy, MinA = 1 + \(\frac{2.1.2}{1^2+2^2}\)= 1 + \(\frac{4}{5}\)\(\frac{9}{5}\)

Bài này nếu tính GTLN thì MaxA = 2 khi a = b

25 tháng 11 2017

Câu trả lời của tớ là : MaxA = 2 khi a = b

Ý tớ là đồng ý với kết quả của Chibi

tk nha

29 tháng 1 2020

\(1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\) \(\Rightarrow a^2-3a+2\le0\Rightarrow a^2+2\le3a\)

\(\Rightarrow a+\frac{2}{a}\le3\)\(\Rightarrow\left(a+\frac{2}{a}\right)^2\le9\Rightarrow a^2+\frac{4}{a^2}\le5\)

Tương tự : \(b+\frac{2}{b}\le3\)\(b^2+\frac{4}{b^2}\le5\)

\(\Rightarrow a+\frac{2}{a}+a^2+\frac{4}{a^2}+b+\frac{2}{b}+b^2+\frac{4}{b^2}\le16\)

Áp dụng BĐT Cô-si,ta có : 

\(16=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)+\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\ge2\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)

\(\Leftrightarrow8\ge\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)

\(\Leftrightarrow A=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\le64\)

Vậy GTLN của A là 64 \(\Leftrightarrow\orbr{\begin{cases}a=b=1\\a=b=2\end{cases}}\)