K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

a) Do \(1010\le n\le2016\)nên:

                \(\sqrt{20203+21\times1010}\le a_n\le20203+21\times2016\)\(\Leftrightarrow204\le a_n\le250\)

b) Ta có:

\(a^2_n=20203+21n=\left(21\times962+1\right)+21n\)

\(\Leftrightarrow a^2_n-1=21\times\left(962+n\right)=3\times7\times\left(962+n\right)\)

\(\Rightarrow\left(a_n-1\right)\left(a_n+1\right)⋮7\Leftrightarrow\hept{\begin{cases}\left(a_n-1\right)⋮7\\\left(a_n+1\right)⋮7\end{cases}}\)

Hay \(a_n+1=7k\)hoặc \(a_n-1=7k\)\(\Rightarrow a_n=7k-1\)hoặc \(a_n=7k+1\left(k\in N\right)\)

\(\Rightarrow dpcm\)

a)\(a_{n+1}=1+2+3+...+n+n+1\)

b)\(a_n+a_{n+1}=1+2+...+n+1+2+...+n+\left(n+1\right)\)

Ta có:\(a_n+a_{n+1}\) có 2n+1 số hạng

=>\(a_n+a_{n+1}=\dfrac{\left(n+1\right)\left(2n\right)}{2}+n+1\)

=\(\dfrac{2n^2+2n}{2}+n+1=n^2+n+n+1=\left(n+1\right)^2\)

Vậy \(a_n+a_{n+1}\) là số cính phương(đpcm)

22 tháng 11 2018

\(a_n=\frac{1}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(S_{2005}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{1+1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2+1}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3+1}}+...+\)

\(\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2005+1}}\)

\(S_{2005}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2006}}\)

\(S_{2005}=1-\frac{1}{\sqrt{2006}}\)

PS : ko chắc :v 

mem nào k sai chỉ hộ t cái :v