K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2021

\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)

\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)

\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))

\(P_{max}=6\) khi \(x=y=3\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)

\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)

\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị

30 tháng 3 2021

Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)

\(\Leftrightarrow\) P = x + y  = \(\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)

Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:

\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24

\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0

\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow\) -4 \(\le\) P \(\le\) 6

Vậy ...

Chúc bn học tốt!

19 tháng 10 2017

\(x,y\ge-6\)

\(\Rightarrow x+y\ge0\Leftrightarrow x+y^2=\sqrt{x+6}+\sqrt{y+6}^2\le x+y+12.2\)

\(\Rightarrow x+y^2-2.x+y-24\le0\Rightarrow x+y\le6\)

\(\Rightarrow Max_P=6\Leftrightarrow x=y=3\)

P/s: Tôi ko chắt lắm đâu. Sai đâu thì bn sửa hộ nhé

24 tháng 2 2019

Tham khảo: Câu hỏi của le thi thanh tra - Toán lớp 9 - Học toán với OnlineMath

14 tháng 6 2019

Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...

14 tháng 6 2019

Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé

17 tháng 3 2017

Bài này ko khó. Bạn nên tự làm!

18 tháng 3 2017

Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)

Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)

 \(\Leftrightarrow P^2-2P-24\ge0\)

\(\Leftrightarrow-4\le P\le6\)

\(\Leftrightarrow-4< P\le6\left(1\right)\)

Ta lại có: 

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)

\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)

Từ (1) và (2) \(\Rightarrow4\le P\le6\)

Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)

GTLN là \(P=6\) đạt được khi \(x=y=3\)  

13 tháng 7 2018

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow x=y\)

\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)

16 tháng 7 2018

Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\)  lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????

21 tháng 5 2019

ai giải = cách tam thức bậc 2 càng tốt nha mình k mạnh cho

27 tháng 6 2018

Đặt \(x+\sqrt{1+x^2}=a\Rightarrow a-x=\sqrt{1+x^2}\Rightarrow a^2-2ax+x^2=1+x^2\)

=> \(a^2-1=2ax\Rightarrow x=\frac{1}{2}\left(a-\frac{1}{a}\right)\)

Tương tự, đặt \(y+\sqrt{1+y^2}=b\Rightarrow y=\frac{1}{2}\left(b-\frac{1}{b}\right)\)

=> x+y=\(\frac{1}{2}\left(a+b-\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{2}\left(a+b-\frac{3}{3a}+\frac{3}{3b}\right)=\frac{1}{2}\left(a+b-\frac{1}{3}a-\frac{1}{3}b\right)\)(vì ab=3)

=\(\frac{1}{2}.\frac{2}{3}\left(a+b\right)=\frac{1}{3}\left(a+b\right)\)

Mà \(\left(a+b\right)^2\ge2ab=6\Rightarrow a+b\ge\sqrt{6}\Rightarrow\frac{1}{3}\left(a+b\right)\ge\frac{\sqrt{6}}{3}\)

dấu = xảy ra <=> a=b<=> x=y bạn tự thay vào và tự tìm nhá 

^_^