Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{x^2-6x+36}=\)M;\(\sqrt{x^2-6x+64}=\)N ,hiển nhiên M\(\ne\)N
M+N=7 <=>(M+N)(M-N)=7(M-N) <=>M2-N2=7(M-N) <=>-28=7(M-N) <=>N-M=4
A=2N-2M=2.4=8
Đặt \(\sqrt{x^2-6x+36}=a\ge0\Rightarrow\sqrt{x^2-6x+64}=\sqrt{a^2+28}\)
Vậy ta có phương trình :
\(a+\sqrt{a^2+28}=7\Leftrightarrow\sqrt{a^2+28}=7-a\Leftrightarrow\hept{\begin{cases}a\le7\\a^2+28=a^2-14a+49\end{cases}\Leftrightarrow a=\frac{3}{2}}\)
ta có : \(A=\sqrt{4\left(x^2-6x+36\right)+112}-2\sqrt{x^2-6x+36}=\sqrt{4a^2+112}-2a=8\)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
*Tìm Max:
Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)
Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)
\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\) (đúng)
Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.
*Tìm min:
Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)
\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )
Tương tự hai BĐT còn lại và cộng theo vế:
\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)
\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Ta có: a+ b= \(\frac{-1+\sqrt{2}}{2}\) + \(\frac{-1-\sqrt{2}}{2}\)= -1
a*b = \(\frac{-1+\sqrt{2}}{2}\)* \(\frac{-1-\sqrt{2}}{2}\)= -\(\frac{1}{4}\)
a2 + b2 = (a+ b)2 - 2ab = 1+ \(\frac{1}{2}\)= \(\frac{3}{2}\)
a4 + b4 = (a2 + b2 )2 - 2a2b2 = \(\frac{9}{4}\)- \(\frac{1}{8}\)= \(\frac{17}{8}\)
a3 + b3 = ( a + b)3 - 3ab(a + b ) = -1-\(\frac{3}{4}\)= \(\frac{-7}{4}\)
vay a7 + b7 = (a3 + b3 )(a4 + b4 ) -a3b3(a+b)= \(\frac{-7}{4}\)* \(\frac{17}{8}\)- (-\(\frac{1}{64}\)) * (-1) = \(\frac{-239}{64}\)