K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2020

Đề tuyển sinh vào trường chuyên tỉnh Hải Dương năm 2019-2020

Ta có \(M=\frac{a^2+b^2}{a^2-b^2}+\frac{a^2-b^2}{a^2+b^2}=\frac{\left(a^2+b^2\right)^2+\left(a^2-b^2\right)^2}{\left(a^2-b^2\right)\left(a^2+b^2\right)}=\frac{2\left(a^4+b^4\right)}{a^4-b^4}=2+\frac{4b^4}{a^4-b^4}\)

\(N=\frac{\left(a^8+b^8\right)^2+\left(a^8-b^8\right)^2}{\left(a^8-b^8\right)\left(a^8+b^8\right)}=\frac{2\left(a^{16}+b^{16}\right)}{a^{16}-b^{16}}=1+\frac{4b^{16}}{a^{16}-b^{16}}\)

+) b=0 => M=2; N=2 => M=N

+) b\(\ne\)0 => \(M=2+\frac{4}{\left(\frac{a}{b}\right)^4-1}\)đặt \(t=\left(\frac{a}{b}\right)^4\)

\(\Rightarrow M-2=\frac{4}{t^4-1}\Rightarrow\frac{4}{M-2}=t^4-1\Rightarrow t^4=\frac{4}{M-2}+1=\frac{2+M}{M-2}\)

\(N=2+\frac{4}{\left(\frac{1}{b}\right)^{16}+1}=2+\frac{4}{\left(t^4\right)^4+1}=2+\frac{4}{\left(\frac{2+M}{M-2}\right)^4-1}\)

11 tháng 7 2017

tương tự Xem câu hỏi

24 tháng 1 2016

toán GPT thì còn tạm đc

24 tháng 1 2016

sory vì em đang học lớp 6

14 tháng 6 2017

sai đề nhé ở đây, min nó là 16 mà 6 căn 6=14 thôi, mà cái điểm rơi cũng ngộ nữa :))

18 tháng 6 2017

Nếu bạn đã nói sai thì cho mình giải thử nhé!

Áp dụng BĐT Bunhiacopxky - Cauchy - Schwarz, ta có: 

\(\left(ax+by+cz\right)^2\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)\(\Rightarrow\sqrt{a^2+b^2+c^2}\cdot\sqrt{x^2+y^2+z^2}\ge ax+by+cz\)(với a, b, c, x, y, z là những số dương)

\(\Rightarrow\sqrt{2+18+4}\cdot\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}\ge\sqrt{2}\cdot\frac{2\sqrt{2}}{a}+3\sqrt{2}\cdot\frac{3b}{\sqrt{2}}+2\cdot\frac{ca}{2}\)

\(\Leftrightarrow\sqrt{24}\cdot\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}\ge\frac{4}{a}+9b+ca\)(1)

Tương tự ta có: \(\sqrt{24}.\sqrt{\frac{8}{b^2}+\frac{9c^2}{2}+\frac{a^2b^2}{4}}\ge\frac{4}{b}+9c+ab\)(2)

                           \(\sqrt{24}\cdot\sqrt{\frac{8}{c^2}+\frac{9a^2}{2}+\frac{b^2c^2}{4}}\ge\frac{4}{c}+9a+bc\)(3)

Cộng vế theo vế (1), (2) và (3) ta được: \(\sqrt{24}\cdot\left(VT\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}+9\left(a+b+c\right)+ab+bc+ca\)

\(=\left(\frac{4}{a}+a\right)+\left(\frac{4}{b}+b\right)+\left(\frac{4}{c}+c\right)+\left(2a+bc\right)+\left(2b+ca\right)+\left(2c+ab\right)\)\(+6\left(a+b+c\right)\)\(\ge2\sqrt{\frac{4}{a}\cdot a}+2\sqrt{\frac{4}{b}\cdot b}+2\sqrt{\frac{4}{c}\cdot c}+2\sqrt{2abc}+2\sqrt{2abc}+2\sqrt{2abc}\)\(+6\left(a+b+c\right)\)\(=12+6\left(a+b+c+\sqrt{2abc}\right)\ge12+6\cdot10=72\)

\(\Rightarrow VT\ge\frac{72}{\sqrt{24}}=6\sqrt{6}\)

Dấu ''='' xảy ra khi: \(\hept{\begin{cases}a+b+c+\sqrt{2abc}=10\\VT=6\sqrt{6}\end{cases}\Leftrightarrow a=b=c=2}\)

Vậy ta được ĐPCM

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

13 tháng 4 2019

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

18 tháng 3 2015

xet tam giác OBC có OB=OC=BC suy ra tam giác OBC đều suy ra CBA=60 độ

NV
18 tháng 2 2020

\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{a^2}{b+c}\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(c^2+a^2\right)}}+\frac{c^2}{\sqrt{2\left(c^2+a^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\\x+y+z=\sqrt{2019}\end{matrix}\right.\) \(\Rightarrow VT\ge\frac{1}{\sqrt{8}}\left(\frac{y^2+z^2-x^2}{x}+\frac{x^2+z^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)\)

\(VT\ge\frac{1}{\sqrt{8}}\left(\frac{\left(y+z\right)^2}{2x}+\frac{\left(x+z\right)^2}{2y}+\frac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\right)\)

\(VT\ge\frac{1}{\sqrt{8}}\left[\frac{\left(2x+2y+2z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)\right]=\frac{x+y+z}{\sqrt{8}}=\sqrt{\frac{2019}{8}}\)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=\) nhiêu đó

15 tháng 10 2020

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)