Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu (1) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (2) và (3) vì m + n = 2n + 5 + n = 3n + 5, không là bội của 3, vô lý (loại)
- Nếu (2) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (3) và (4) vì: m + 7n = m + n + 6n, là bội của 3, không là số nguyên tố (loại)
- Nếu (4) sai tức là (3) kết luận còn lại đúng ta cũng thấy mâu thuẫn giữa (2) và (3) như trên (loại)
Do đó, (3) là kết luận sai
Từ (1) và (2) cho thấy 2n + 6 chia hết cho n
Vì 2n chia hết cho n nên 6 chia hết cho n
Mà \(n\in N\Rightarrow n\in\left\{1;2;3;6\right\}\)
Lại có: m + 7n = 2n + 5 + 7n = 9n + 5 (1)
Lần lượt thay các giá trị tìm được của n vào (1) ta thấy n = 2 thỏa mãn
=> m = 2.2 + 5 = 9
Vậy m = 9; n = 2 thỏa mãn đề bài
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
b)
P là số nguyên tố lớn hơn 3
=> p không chia hết cho 3
=> p chia 3 dư 1 hoặc p chia 3 dư 2
=> p=3K+1 hoặc p=3K+2 (K\(\in\)\(ℕ^∗\))
+ p=3K+1
(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)
+p=3K+2
(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)
Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)
Ta có: p nguyên tố lớn hơn 3
=> P là số lẻ
p-1 là số chẵn
p+1 là số chẵn
=> (p-1).(p+1) chia hết cho 8 (b)
Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24
p > 3 => p ko chia hết cho 2 và 3
p ko chia hết cho 2 => p-1 và p+1 là 2 số chăn liên tieepss => (p-1).(p+1) chia hết cho 8
p ko chia hết cho 3 => p=3k+1 hoặc p=3k+2
Với p=3k+1 => p-1=3k chia hết cho 3
V
lơ tay mk ấn gửi trả lời sory nha mk làm tiếp vậy
Với p=3k+2 =>p+1 = 3k+3 chia hết cho 3
=> (p-1).(p+1) chia hết cho 3
Vì (p-1).(p+1) chia hết cho 8 và 3 => (p-1).(p+1) chia hết cho 24
vì p là SNT lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2 và p lẻ (K thuộc N*)
Mà p+2 cũng là SNT nên p có dạng 3k+2
p+1=3k+2+1=3(k+1) chia hết cho 3
Mà p lẻ => p +1 chia hết cho 2
=> p chia hết cho 6
neu p > 3 thi ta thu neu p = 5 thi 5+ 4 = 9 ( ko thoa man ) p= 7 thi 7+ 4 = 11 ( thoa man )
vs truong hop p> 7 ta co dang p= k.7 +1 , k.7 +2 , k.7 +3 , k.7 +4 , k.7 +5 ,k.7 +6
p + 4 = k.7 + 1+4
= k.7 +5
p = k.7 +1 (ko thoa man ) neu thu tiep ta se thay ko co truong hop nao thoa man
p = 7 va 7+8 = 15 la hop so
p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 hoặc 3k + 2 .
Nếu p= 3k + 1 thì p + 4 là hợp số, trái với đề bài.
Vậy p phải có dạng 3k + 2, khi đó p + 8 là hợp số.
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
số chính phương lớn nhất có ba chữ số là 961
Nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n2 khi chia cho 3 là 1
Tick nha
Ta thấy : (p-1).p.(p+1)là tích 3 số tự nhiên liện tiêp nên (p-1).p.(p+1) \(⋮\) 3
, mà p là số nguyên tố > 3 nên p không chia hết cho 3 => (p-1)(p+1)\(⋮\)3 (1)
Vì chỉ có 1 số nguyên tố chẵn là 2 ,
còn lại toàn là số nguyên tố lẻ mà p>3 nên P là số nguyên tố lẻ
=> (p-1)(p+1) là tích 2 số chẵn liên tiếp nên (p-1)(p+1) \(⋮\) 8 (2)
Từ (1)và (2) => (P-1)(P+1) chia hết cho cả 3 và 8 mà (3;8)=1 nên (p-1)(p+1)\(⋮\) 24 ( đpcm)
a, Vì p là số nguyên tố > 3 => p lẻ
=> Hai số \(p-1;p+1\)là hai số chẵn liên tiếp
=> \(\left(p-1\right).\left(p+1\right)⋮8\)( 1 )
b, Vì p là số nguyên số > 3 => p = 3k + 1 hoặc p = 3k + 2 ( k \(\in\)N* )
+, Với p = 3k + 1
=> \(\left(p-1\right).\left(p+1\right)=3k.\left(3k+2\right)⋮3\left(2a\right)\)
+, Với p = 3k + 2
\(\Rightarrow\left(p-1\right).\left(p+1\right)=\left(3k-1\right).3.\left(k+1\right)⋮3\left(2b\right)\)
Từ \(\left(2a\right),\left(2b\right)\Rightarrow\left(p-1\right).\left(p+1\right)⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\left(p-1\right).\left(p+1\right)⋮\left(3.8\right)\Rightarrow\left(p-1\right).\left(p+1\right)⋮24\)