K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Tham khảo tại đây nhé : Câu hỏi của Mai Phương - Toán lớp 8 - Học toán với OnlineMath

17 tháng 11 2018

vì a ko chia  hết cho 2,3

=> a=6m-1( m thuộc N)

\(P=4.\left(6m-1\right)^2+3.\left(6m-1\right)+5\)

\(P=144m^2-48m+4+18m-3+5=144m^2-48m+18m+6\)

\(P=6.\left(24m^2-5m+1\right)⋮6\)

=> đpcm

12 tháng 12 2016

đây là toán lớp mấy vậy

12 tháng 12 2016

Muốn vip à 

27 tháng 6 2016

a) \(3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10

b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3\)

\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6

27 tháng 6 2016

mình k cho bạn rùi đấy Thảo Lê Thị

11 tháng 12 2016

Bài này giải được 1 tháng VIP đấy, vì đây là câu hỏi của Toán vui hằng tuần

30 tháng 9 2020

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow2A=2^2+2^3+...+2^{121}\)

\(\Leftrightarrow2A-A=\left(2^2+2^3+...+2^{121}\right)-\left(2+2^2+...+2^{120}\right)\)

\(\Rightarrow A=2^{121}-2\)

30 tháng 9 2020

b) Mk làm mẫu 1 phần thôi nhé bn:

\(A=2+2^2+...+2^{120}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{119}\right)\) chia hết cho 3

Tương tự xét chia hết cho 7 thì nhóm 3 số, cho 15 thì 4 số nhé

19 tháng 7 2017

3n + 3 + 3n + 1 + 2n + 3 + 2n + 2

= 3n.33 + 3n.3 + 2n.23 + 2n.22

= 3n.(27 + 3) + 2n.(8 + 4)

= 3n.30 + 2n.12

= 3n.5.6 + 2n.2.6

= 6.(3n.5 + 2n.2)  \(⋮\)  6

19 tháng 7 2017

Cảm ơn bạn kayasari nhiều nha !

4 tháng 9 2015

CHÚNG TA KO CẦN TRẢ LỜI MẶC KỆ Ả TA LÊU LÊU

9 tháng 8 2015

mình **** cho 3 cái luôn

29 tháng 6 2018

a) Ta có:

\(9^{1945}-2^{1930}=...9-...4\) (Dấu hiệu số cuối của 1 lũy thừa)

                              \(=...5⋮5\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\)

Vậy \(9^{1945}-2^{1930}⋮5\left(đpcm\right)\)

b) Ta có:

\(4^{2010}+2^{2014}=...6+...4\)

                              \(=...10⋮10\)

\(\Rightarrow4^{2010}+2^{2014}⋮10\)

Vậy \(4^{2010}+2^{2014}⋮10\left(đpcm\right)\)