K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

$A=n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$

Vì $n^2$ là scp nên $n^2$ có tận cùng là $0,1,4,5,6,9$

Nếu $n^2$ tận cùng là $0$ thì $n$ tận cùng là $0$

$\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 10\vdots 5$

Nếu $n^2$ tận cùng là $5$ thì $n$ tận cùng là $5$

$\Rightarrow n\vdots 5\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 5$

Nếu $n^2$ tận cùng là $1$ hoặc $6$ thì $n^2-1$ tận cùng là $0$ hoặc $5$

$\Rightarrow n^2-1\vdots 5\Rightarrow A\vdots 5$

Nếu $n^2$ tận cùng là $4$ hoặc $9$ thì $n^2+1$ tận cùng là $5$ hoặc $0$

$\Rightarrow n^2+1\vdots 5\Rightarrow A\vdots 5$

Vậy tóm lại $A\vdots 5$

----------------

Lại có:

$A=n(n^2-1)(n^2+1)=n(n^4-1)$

Nếu $n$ chẵn thì $A=n(n^4-1)\vdots 2$

Nếu $n$ lẻ thì $n^4-1$ chẵn $\Rightarrow A=n(n^4-1)\vdots 2$
Vậy tóm lại $A\vdots 2$

Vậy $A\vdots 2; A\vdots 5\Rightarrow A\vdots 10$

b.

$A=n(n^4-1)=n^5-n\vdots 10$

$\Rightarrow n^5, n$ có cùng chữ số tận cùng.

25 tháng 4 2015

Câu b ko biết

câu a:

20^n+16^n-3^n-1=(20^n-1^n)+(16^n-3^n)=(20-1)k+(256^x-9^x)                                      (n=2x)

=19k+247x=19(k+13x) chia hết cho 19

20^n+16^n-3^n-1=(20^n-3^n)+(16^n-1)=(20-3)f+(256^x-1^x)=17f+(256-1)x

=17f+255x=17(x+15x) chia hết cho 17

=>20^n+16^n-3^n-1 chia hết cho 17;19

=> 20^n+16^n-3^n-1 chia hết cho 323

=>ĐPCM neeys đúng cho tớ **** nha!

25 tháng 4 2015

Cảm ơn cậu nhưng cố giúp tớ câu b lun đi!

6 tháng 4 2016

vi n la so tu nhien chan nen gia su n=0=> (20^0+16^0-3^0-1) chia het cho 323

gia su n =2 => (20^2+16^2-3^2-1) chiaa het cho 323

tu nhung dieu tren nen voi moi n la so tu nhien  chan thi (20^n+16^n-3^n-1)chia het cho 323

16 tháng 8 2016

a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.

     Cách 2. Xét hiệu 6n−n=5n chia hết cho 10 vì n chẵn.
b) Nếu n tận cùng bằng 1 hoặc 9 thì n2 tận cùng bằng 1, do đó n4 tận cùng bằng 1.
     Nếu n tận cùng bằng 3 hoặc 7 thì n2 tận cùng bằng 9, do đó n4 tận cùng bằng 1.
     Nếu n tận cùng bằng 4 hoặc 6 thì n2 tận cùng bằng 6, do đó n4 tận cùng bằng 6.
     Nếu n tận cùng bằng 2 hoặc 8 thì n2 tận cùng bằng 4, d
29 tháng 9 2017

a) n là số chẵn

\(\Rightarrow\) n = 2k

\(\Rightarrow\) 6n = 12k

Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.

\(\Rightarrow\) n và 6n có tận cùng như nhau

\(\Rightarrow\) ĐPCM

31 tháng 1 2016

bài này mình làm được nhưng hơi dài lên mất khoảng 2 đến 3 phút bạn đợi mình được không ?

31 tháng 1 2016

bai nay ???????????????