Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ
a) \(\text{Sin}^2\alpha+\text{Cos}^2\alpha=\frac{AC^2}{BC^2}+\frac{AB^2}{BC^2}=\frac{BC^2}{BC^2}=1\left(\text{vì }AB^2+AC^2=BC^2\right)\)
=>điều phải chứng minh
b)\(\frac{\text{Sin}\alpha}{\text{Cos}\alpha}=\frac{\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{AC}{BC}.\frac{BC}{AB}=\frac{AC}{AB}=\text{Tan}\alpha\)
=>điều phải chứng minh
A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)
D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)
Lời giải:
Với một góc \(0< a< 90^0\) thì \(\cos a\neq 0\).
Ta có:
\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{1-\frac{\sin a}{\cos a}}{1+\frac{\sin a}{\cos a}}\) (chia cả tử và mẫu cho \(\cos a\))
\(=\frac{1-\tan a}{1+\tan a}\) (đpcm)
Gọi AB =x là khoảng cách cần tìm,AC:quảng đường An đi 20 phút,D là điểm 2 người gặp nhau.Ta có An đi được 2x(km);Bình đi được 2BD(km),AC=4/3 km.
Gọi t là thời gian 2 người đã đi để gặp nhau(An xuất phát từ C)
⇒t=CD4=DB3=CD+DB7=CB7=x−437⇒DB=3x−47⇒t=CD4=DB3=CD+DB7=CB7=x−437⇒DB=3x−47
Ta có pt : 2x=8(3x−4)7⇒x=3,2km
Gọi AB =x là khoảng cách cần tìm,AC:quảng đường An đi 20 phút,D là điểm 2 người gặp nhau.Ta có An đi được 2x(km);Bình đi được 2BD(km),AC=4/3 km.
Gọi t là thời gian 2 người đã đi để gặp nhau(An xuất phát từ C)
⇒t=CD4=DB3=CD+DB7=CB7=x−437⇒DB=3x−47⇒t=CD4=DB3=CD+DB7=CB7=x−437⇒DB=3x−47
Ta có pt : 2x=8(3x−4)7⇒x=3,2km
Giải
Gọi x (km/h) là vận tốc đi bộ của An
Gọi y (km/h) là vận tốc đi xe đạp của An
ĐK : 0 < x < y
Vì vận tốc đi xe đạp lớn hơn vận tốc đi bộ là 9km/h nên ta có PT :
\(-x+y=9\) (1)
Thời gian đi buổi sáng là : \(\dfrac{3}{x}\) (h)
Thời gian đi buổi chiều là : \(\dfrac{3}{y}\) (h)
Vì thời gian đi b/c ít hơn thời gian đi b/s là 45' tức \(\dfrac{3}{4}\)h nên ta có PT :
\(\dfrac{3}{x}-\dfrac{3}{y}=\dfrac{3}{4}\) (2)
Từ (1) và (2) ta có HPT :
\(\left\{{}\begin{matrix}-x+y=9\\\dfrac{3}{x}-\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y-9\\\dfrac{3}{y-9}-\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\left(3\right)\)
\(\left(3\right)\Leftrightarrow12y-12\left(y-9\right)=3y\left(y-9\right)\)
\(\Leftrightarrow12y-12y+108=3y^2-27y\)
\(\Leftrightarrow3y^2-27y-108=0\)
\(\Delta=\left(-27\right)^2-4.3.\left(-108\right)=2025\)
\(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{27+\sqrt{2025}}{6}=12\left(tm\right)\\y_2=\dfrac{27-\sqrt{2025}}{6}=-3\left(loại\right)\end{matrix}\right.\)
Thế \(y=12\) vào (1) \(\Rightarrow x=3\) (t/m)
Vậy vận tốc đi bộ của An là 3km/h
What \(\frac{??}{?}\)