Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(sin\alpha.cosb=\dfrac{1}{2}\left[sin\left(a-b\right)+sin\left(a+b\right)\right]\)
\(=\dfrac{1}{2}\left[\dfrac{2}{5}+\left(-\dfrac{3}{5}\right)\right]\)
\(=\dfrac{1}{2}.\left(-\dfrac{1}{5}\right)\)
\(=-\dfrac{1}{10}\)
Ta có \(sin\left(a-b\right)+sin\left(a+b\right)=2sin\left(\dfrac{a-b+a+b}{2}\right)cos\left(\dfrac{a+b-\left(a-b\right)}{2}\right)\\ \Rightarrow2sin\left(a\right).cos\left(b\right)=\dfrac{2}{5}+\left(-\dfrac{3}{5}\right)=-\dfrac{1}{5}\\ \Rightarrow sin\left(a\right)cos\left(b\right)=-\dfrac{1}{10}\)
rút gọn biểu thức:
E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))
Tham khảo
sin(a+b) = sina.cosb + cosa.sinb = 1, suy ra cosa.sinb = 1 - sina.cosb.
sin(a-b) = sina.cosb - cosa.sinb = sina.cosb - (1 - sina.cosb) = 2sina.cosb - 1=1/2.
Vậy sina.cosb=(1/2+1):2=3/4.
a) \(\dfrac{\sin2\text{a}+\cos a}{1+\cos2\text{a}+\cos a}=2\tan a\)
a) \(\dfrac{sin2\alpha+sin\alpha}{1+cos2\alpha+cos\alpha}=\dfrac{2sin\alpha cos\alpha+sin\alpha}{2cos^2\alpha+cos\alpha}\)\(=\dfrac{sin\alpha\left(2cos\alpha+1\right)}{cos\alpha\left(2cos\alpha+1\right)}=\dfrac{sin\alpha}{cos\alpha}=tan\alpha\).
sin(a+b) = sina.cosb + cosa.sinb = 1, suy ra cosa.sinb = 1 - sina.cosb.
sin(a-b) = sina.cosb - cosa.sinb = sina.cosb - (1 - sina.cosb) = 2sina.cosb - 1=1/2.
Vậy sina.cosb=(1/2+1):2=3/4.