K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

S = 1 + 32 + 34 + 36 + ... + 392 + 394 + 396 + 398

= (1 + 32) + (34 + 36) + ... + (392 + 394)+ (396 + 398)

= (1 + 32) + 34(1 + 32) + .... + 392(1 + 32) + 396(1 + 32)

= (1 + 9) + 34(1 + 9) + ..... + 392.( 1 + 9) + 396(1 + 9)

= 10 + 34.10 + ...... + 392.10 + 396.10

= 10(1 + 34 + ..... + 392 + 396) Chia hết cho 10

=> S Chia hết cho 10 (ĐPCM)

22 tháng 2 2017

S=1+3^2+,,,,,,,+3^97+3^98

S=(1+3^2)+.............+(3^97+3^98)

S=(1+3^2)+............+3^97.(1+3^2)

S=(1+9)+........+3^97.(1+9)

S=10+......+3^97.10 \(⋮\)10

Vì (1+9=10\(⋮\)10)

=>S\(⋮10\)

23 tháng 3 2021

Ta có S=1+32+34+...+398=>32.S=32+34+36+....+3100

=(S-1)+3100

=>9S=S+3100-1=>\(S=\frac{3^{100}-1}{8}\)

Ta thấy S=1+32+34+..+398=(1+398)+(32+34)+....+(394+396)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10.

23 tháng 3 2021

Sửa lại S=1+32+34+..+398=(1+398)+(32+34)+...+(394+396)

20 tháng 11 2016

S=1+32+34+36+.............................+398

9S=3+34+36+38+.........................+3100

=> 9S-S=3100-1

3100-1=(34)25-1

=(...1)25-1

=(.....1)-1

=(.....0) chia hết cho 10

Vậy S chia hết cho 10

20 tháng 11 2016

a, \(S=1+3^2+3^4+3^6+...+3^{98}\)

\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{100}\)

\(\Rightarrow3^2S-S=\left(3^2+3^4+3^6+3^8+...+3^{100}\right)-\left(1+3^2+3^4+3^6+...+3^{98}\right)\)

\(\Rightarrow8S=3^{100}-1\)

\(\Rightarrow S=\frac{3^{100}-1}{8}\)

Vậy : \(S=\frac{3^{100}-1}{8}\)

b, \(S=1+3^2+3^4+3^6+...+3^{98}\)

\(S=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)

\(S=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)

\(S=1.10+3^4.10+...+3^{96}.10\)

\(S=\left(1+3^4+...+3^{96}\right).10\)

Vì : \(1+3^4+...+3^{96}\in N\Rightarrow S⋮10\)

Vậy : \(S⋮10\)

1 tháng 4 2016

Mk ngĩ ra rồi

S=(1+32)+(34+36)+...+(396+398)

S=10+34.(1+32)+...+396.(1+32)

S=10+34.10+...+396.10

S=10(1+34+...+396)

có thừa số 10 chia hết cho 10 nên tích chia hết cho 10

1 tháng 4 2016

k đi mình trả lời cho

4 tháng 10 2016

a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)

\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)

\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)

Vậy A chia hết cho 4     ĐPCM

b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)

\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)

Vậy A chia hết cho 40      ĐPCM

20 tháng 8 2017

S= 3^0 +3^2 +3^4 +....+ 3^2002

9S= 3^4 +3^6+.......+3^2004

9S-S=3^2004-1

8S=3^2004-1

S=3^2004-1/8

chúc bạn học tốt

20 tháng 8 2017

a﴿ Nhân S với 3 2 ta được:

9S=3^2 + 3^4 + ... + 3^2002 + 3^2004  => 9S ‐ S = ﴾3^2 + 3^4 + ... + 3^2004 ﴿ ‐ ﴾ 3^0 + 3^4 + ... + 2^2002 ﴿

 =>8S=3^2004‐1

 =>S= 3^2004‐1 /8

b﴿ ta có S là số nguyên nên phải chứng minh 3^2004‐1 chia hết cho 7 ta có : 3^2004‐1 = ﴾ 3^6 ﴿ 334‐1 = ﴾ 3^6‐1 ﴿ . M = 7 . 104 . M    => 3^2004 chia hết cho 7 . Mặt khác \(^{ƯCLN^{ }}\left(7;8\right)\)= 1 nên S chia hết cho 7

HIHI