Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,S=(1-3+32-33)+......+(396-397+398-399)
S=(-20)+...........+396.(1-3+32-33)
S=(-20)+..........+396.(-20)
S=(1+34+...........+396).(-20) chia hết cho (-20){đpcm}
b,3S=3-32+33-34+...........+399-3100
3S+S=4S=1-3100
S=\(\frac{1-3^{100}}{4}\)
Mà S chia hết cho (-20) nên S chia hết cho 4
=>1-3100 chia hết cho 4
Do 1 chia 4 dư 1 nên 3100 chia 4 dư 1
=>đpcm
Cho S= 1-3+32-33+...+398-399
a, Chứng minh S là bội của 20
b, Tính S, từ đó suy ra 3100chia cho 4 dư 1
a)S=1-3+32+...+398-399
=-2+32(1-3)+...+398(1-3)
=-2-2.32-2.34-...-2.398
=-2(1+32+34+...+398)
=-2[(1+32+34)+(36+38+310)+...+(394+396+398)]
=-2[100+36.100+...+394.100]
=-200(1+36+...394)
Do -200 là bội của -20 =>-200(1+36+...394) là bội của -20
=>S là bội của -20(ĐPCM)
b)S=1-3+32+...+398-399
=-2+32(1-3)+...+398(1-3)
=-2-2.32-2.34-...-2.398
=-2(1+32+34+...+398)
=>32S=9S=-2(32+34+36+...+3100)
=>9S-S=-2(32+34+36+...+3100)+2(1+32+34+...+398)
=>8S=-2(3100-1)
=>S=\(\frac{-2\left(3^{100}-1\right)}{-8}\)=\(\frac{3^{100}-1}{-4}\)
Do S chia hết cho -20 => S chia hết cho -4
=>(3100-1):(-4)=(3100-1).\(\frac{1}{-4}\) chia hết cho (-4)
Do \(\frac{1}{-4}\) không chia hết =>3100-1 chia hết cho -4 =>3100-1 chia hết cho 4
=>3100 chia 4 dư 1(ĐPCM)
a.S=1-3+32-33+...+398-399
=(1-3+32-33)+...+(396-397+398-399)
=(-20)+...+396.(1-3+32-33)
=(1+...+396).(-20) chia hết cho -20
=>đpcm
b.S=1-3+32-33+...+398-399
=>3S=3-32+33-34+...+399-3100
=>3S+S=(3-32+33-34+...+399-3100)+(1-3+32-33+...+398-399)
=>4S=1-3100
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
S chia hết cho 4 =>1-3100 chia hết cho 4
1 chia 4 dư 1 =>3100 chia 4 dư 1
=>đpcm
a) S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + ... + ( 396 - 397 + 398 - 399 )
S = ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + ... + 396 ( 1 - 3 + 32 - 33 )
S = ( 1 - 3 + 32 - 33 ) ( 1 + 34 + ... + 396 )
S = ( 1 + 34 + .... + 396 ) \(⋮\)-20
Suy ra S là B(-20)
b) S = 1 - 3 + 32 - 33 + .... + 398 - 399
3S = 3 - 32 + 33 - 34 + ... + 399 - 3100
4S = 1 - 3100
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
vì S là 1 số nguyên nên \(1-3^{100}⋮4\) \(\Rightarrow\)3100 chia 4 dư 1
a) \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\) có 100 số hạng
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\) có 25 nhóm
\(=\left(-20\right)+\left(-20\right).3^4+...+\left(-20\right).3^{96}\)
\(=\left(-20\right).\left(1+3^4+...+3^{96}\right)⋮\left(-20\right)\)
=> S là B(-20)
b) Từ câu a
=> \(3^4.S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)\)
=> \(3^4.S-S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)-\left(-20\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
=> \(\left(3^4-1\right)S=\left(-20\right)\left(3^{100}-1\right)\)
=> \(80S=-20.\left(3^{100}-1\right)\)
=> \(S=-\frac{3^{100}-1}{4}\) mà S là số nguyên
=> \(3^{100}-1⋮4\)=> 3^100 : 4 dư 1
Cậu tính ra S có bao nhiêu số hạng rồi vì Scó 100 số hạng.Mà S chia hết cho bốn rồi nhóm bốn số hạn của S vào nhau