K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right).\left(x+y+z\right)\)   (do x+y+z=1 nên michf nhân vào kết quả sẽ ko bị  thay đổi)

\(S=\frac{21}{16}+\left(\frac{x}{4y}+\frac{y}{16x}\right)+\left(\frac{x}{z}+\frac{z}{16x}\right)+\left(\frac{y}{z}+\frac{z}{4y}\right)\)

AD BĐT cô si,ta có:

\(S\ge\frac{21}{16}+2.\sqrt{\frac{x}{4y}.\frac{y}{16x}}+2\sqrt{\frac{x}{z}.\frac{z}{16x}}+2.\sqrt{\frac{y}{z}.\frac{z}{4y}}=\frac{21}{16}+\frac{1}{4}+\frac{1}{2}+1=\frac{49}{16}\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=2y=z\\x+y+z=1\\x;y;z>0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}}\)

11 tháng 3 2022

T=116x+14y+1zT=116x+14y+1z  ; x + y + z = 1

⇒T=x+y+z16x+x+y+z4y+x+y+zz⇒T=x+y+z16x+x+y+z4y+x+y+zz

=116+y16x+z16x+x4y+14+z4y+xz+yz+1=116+y16x+z16x+x4y+14+z4y+xz+yz+1

=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)                    (1)

x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0

áp dụng bđt cô si : 

y16x+x4y≥2√y16x⋅x4y=14y16x+x4y≥2y16x⋅x4y=14                             (2)

z16x+xz≥2√z16x⋅xz=12z16x+xz≥2z16x⋅xz=12                                 (3)

x4y+yz≥2√z4y⋅yz=1x4y+yz≥2z4y⋅yz=1                                        (4)

(1)(2)(3)(4) ⇒T≥116+14+1+14+12+1⇒T≥116+14+1+14+12+1

⇒T≥4916⇒T≥4916

dấu "=" xảy ra khi \hept⎧⎪ ⎪⎨⎪ ⎪⎩y16x=x4yz16x=xzz4y=yz⇔\hept⎧⎨⎩4y2=16x2z2=16x2z2=4y2\hept{y16x=x4yz16x=xzz4y=yz⇔\hept{4y2=16x2z2=16x2z2=4y2

⇔\hept⎧⎨⎩y=2xz=4xz=2y⇔\hept{y=2xz=4xz=2y có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7

20 tháng 8 2019

Bài này thì chắc cô si ngược dấu thôi:v

\(LHS=\Sigma\frac{x}{1+y^2}=\Sigma x.\left(1-\frac{y^2}{1+y^2}\right)\)

\(\ge\Sigma x\left(1-\frac{y}{2}\right)=x+y+z-\frac{xy+yz+zx}{2}\)

\(\ge x+y+z-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

P/s: check xem có ngược dấu chỗ nào ko:v

5 tháng 7 2018

2.

Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

1: 

Áp dụng bất đẳng thức Cô si:

\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)

\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)

\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)

\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)

\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)

\(=1\left[1+\frac{1}{4}\right]\)

\(=1+\frac{5}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

5 tháng 7 2018

2. áp dạng bất đẳng thức cauchy - schwarz dạng engel

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dấu bằng xay ra khi x=y=z=1

14 tháng 12 2016

\(\Rightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right).\left(x+y+z\right)=x+y+z\)

\(\Rightarrow\frac{x^2+x\left(z+x\right)}{y+z}+\frac{y^2+y\left(x+z\right)}{x+z}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)

30 tháng 12 2016

Ta có

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)

\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)

Kết hợp với điều kiện ban đầu thì

GTNN của A là 0 đạt được khi 

\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)