Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36.(1 + 3) + 38.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
2) 162008 - 82000
= (...6) - (84)500
= (...6) - (...6)500
= (...6) - (...6)
= (...0) chia hết cho 10
3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2
=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2
=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2
=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2
=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2
=> 1100 + 800 + 1125 = (x + 1)2
=> 3025 = (x + 1)2, vô lí
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
Ta có : S=3+3^3+3^5+3^7+.....+3^2013+3^2015
= ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^11)+.....+( 3^2011 + 3^2013 + 3^2015)
= 3.(1+3^2+3^4)+3^7.(1+3^2+3^4)+.....+3^2011.(1+3^2+3^4)
= 3.91+3^7.91+......+3^2011.91
= (3+3^7+.....+3^2011).91
Vì 91 chia hết cho 13 => (3+3^7+.....+3^2011).91 chia hết cho 13
Vậy S chia hết cho 13