Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) S=32+34+...+3998+31000
S=(32+34)+[(36+38+310)+(312+314+316)....+(3996+3998+31000)]
S= 90+ [36. 91+312.6+...+3996. 91]
Vì 91 chia hết cho 7 nên: 36. 91+312.6+...+3996. 91 cũng chia hết cho 9
Mà 90 chia 7 dư 6 nên suy ra S cũng chia 7 dư 6
Vậy S chia 7 dư 6
Nếu đúng k cho mk nha
cho S = 3^2 + 3^4 +...+ 3^998 + 3^1000
a) tính S
b) CMR S chia 7 dư 6
giúp mik trình bày phần a nhé!
a) 9.S = 34+ 36+.....+ 31000+ 31002
9.S - S = (34+ 36+.....+ 31000+ 31002) - ( 32+ 34+.....+ 3998+ 31000)
8.S = 31002 - 32
S =31002 - 32 / 8
a) \(S=3^2+3^4+...+3^{998}+3^{1000}\)
\(\Rightarrow3^2.S=3^2.3^2+3^2.3^4+...+3^2.3^{998}+3^2.3^{1000}\)
\(9S=3^4+3^6+...+3^{1000}+3^{1002}\)
\(\Rightarrow8S=9S-S=\left(3^4+3^6+...+3^{1000}+3^{1002}\right)-\left(3^2+3^4+...+3^{998}+3^{1000}\right)\)
\(=3^{1002}-3^2\)
\(=3^{1002}-9\)
\(\Rightarrow S=\dfrac{3^{1002}-9}{8}\)
s = 3 ^0 + 3 ^ 2 + 3^ 4+ 3 ^6 +... + 3 ^2002
9S = 3 ^4 + 3^6 + 3 ^ 2004
9S - S= 3 ^ 2004 - 1
8S = 3^2004 - 1
S = 3 ^ 2004 - 1/8
k mk nha
b) S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
b ) mình đang ngĩ . mình làm ý a nha
S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + .... + ( 396 - 397 + 398 - 399 )
= ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + .... + 396 ( 1 - 3 + 32 - 33 )
= ( 1 - 3 + 9 - 27 ) + 34 ( 1 - 3 + 9 - 27 ) + ... + 396 ( 1 - 3 + 9 - 27 )
= - 20 + 34 ( - 20 ) + .... + 396 ( - 20 )
= - 20( 1 + 34 + .... + 396 ) chia hết cho - 20 ( đpcm )
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Lời giải:
$S=3^2+3^4+3^6+...+3^{998}+3^{1000}$
$3^2S=3^4+3^6+3^8+...+3^{1000}+3^{1002}$
$\Rightarrow 3^2S-S=3^{1002}-3^2$
$\Rightarrow 8S=3^{1002}-9$
$\Rightarrow S=\frac{3^{1002}-9}{8}$
b.
$S=3^2+3^4+(3^6+3^8+3^{10})+(3^{12}+3^{14}+3^{16})+...+(3^{996}+3^{998}+3^{1000})$
$=90+3^6(1+3^2+3^4)+3^{12}(1+3^2+3^4)+...+3^{996}(1+3^2+3^4)$
$=90+(1+3^2+3^4)(3^6+3^{12}+...+3^{996})$
$=90+91(3^6+3^{12}+...+3^{996})$
$=6+ 12.7+7.13(3^6+3^{12}+...+3^{996})$ chia $7$ dư $6$