K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

a) S = 3 + 32 + ... + 31998

=> S = ( 3 + 32 ) + ... + ( 31997 + 31998 )

=> S = ( 3 + 9 ) + ... + 31996 . ( 3 + 32 )

=> S = 12 + ... + 31996 . 12

=> S = ( 1 + ... + 31996 ) . 12 chia hết cho 12

=> S chia hết cho 12

b) S = 3 + 32 + ... + 31998

=> S = ( 3 + 32 + 33 ) + ... + ( 31996 + 31997 + 31998 )

=> S = 39 + ... + 31995 . ( 3 + 32 + 33 )

=> S = 39 + ... + 31995 . 39

=> S = ( 1 + ... + 31995 ) . 39 chia hết cho 39

=> S chia hết cho 39

20 tháng 12 2017

a) Ta có \(S=2+2^2+2^3+...+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{97}.15\)

\(=\left(2+2^5+...+2^{97}\right).15\)

Vậy nên \(S⋮15\)

b) Ta thấy \(2+2^5+...+2^{97}=2\left(1+2^4+...+2^{96}\right)⋮2;15⋮5\)

Vậy nên \(S⋮10\) hay chữ số tận cùng của S là 0.

10 tháng 11 2016

nhóm (5+52+53) lại rồi tiếp tục nhóm các số còn lại như vậy ta sẽ có thừa số chung là 31 và chia hết cho 31

đầy đủ S= (5+52+53)+ .....+( 52014+52015+52016)

               = 5( 1+5+52)+.....+52014( 1+5+52)

                = (5+...+52014 ) ( 1+5+52)

                 = (5+...+52014)31 chia hết cho 31

10 tháng 11 2016

S = 5 + 52 + 53 + 5+.........+ 52016

S = ( 5 + 5+ 53 )+( 5+ 55 + 5)+...........+ ( 52014 + 52015 +5 2016)

S = 5 * (1+ 5 +5)+ 54 * (1+5+52) + .........+ 52014 * (1 + 5 + 52 )

S = 5 * 31 + 54 * 31 + .........+ 22014 * 31

S = 31 * (5 + 54 + .........+ 52014 )

Vì trong tích có thừa số chia hết cho 31 nên tích đó chia hết cho 31

4 tháng 1 2017

cau viet so mu kieu gi vay

20 tháng 9 2018

s= 1 -3 +3- 3-...+32014-32015

 =(1-3+32)-(33-34+35)-...-(32013-32014+32015)

 =(1-3+32)-33(1-3+32)-...-32013(1-3+32)

=7-33 *7-...-32013*7

=7*(1-33-...-32013)

có 7 chia hết cho 7,(1-33-...-32013)  là số nguyên

=> s chia hết cho 7 (đpcm)

21 tháng 1 2016

sai đề , ai thấy sai đề tick mk nha

24 tháng 7 2019

a) \(3^5+3^4+3^3\)

\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)

\(=3^3\left(3^2+3+1\right)\)

\(=3^3\cdot13⋮13\)     (đpcm)

b) \(2^{10}-2^9+2^8-2^7\)

\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)

\(=2^7\left(2^3-2^2+2-1\right)\)

\(=2^7\cdot5⋮5\)    (đpcm)

=))

20 tháng 12 2018

Ahihi

Nhón ba số đầu với nhau cứ thế cho đến hết

(1+3+3^2)+...+(3^2016+3^2017+3^2018)

=13+...+3^2016(1+3+3^2)

=13+...+3^2016x13

=13(1+...+3^2016)

vì 13 chia hết cho 13 =>13 nhân (1+...+3^2016) chia hết cho 13

Chuẩn không nhớ

20 tháng 12 2018

\(S=1+3^1+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}.\)

\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2016}\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{2016}.13\)

\(S=13\left(3^3+...+3^{2016}\right)⋮13\left(đpcm\right)\)

Hok tốt

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j