Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
Lời giải:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$
Lại có:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.
Ta có : S = 1 + 51 + 52 +...+ 512 + 513
=> S = 1 + 5 + (52 + 53 + 54 ) + (55 + 56 + 57) + ...... + (511 + 512 + 513)
=> S = 6 + 52(1 + 5 + 25) + 55(1 + 5 + 25) + ..... + 511(1 + 5 + 25)
=> S = 6 + 52.31 + 55.31 + ..... + 511.31
=> S = 6 + (52.31 + 55.31 + ..... + 511.31)
=> S = 6 + 31(52 + 55 + ..... + 511)
Mà : 31(52 + 55 + ..... + 511) chia hết cho 31
Nên S = 6 + 31(52 + 55 + ..... + 511) chia 31 dư 6
5S= 5+52 +53 +....+ 513 + 514
4S=(5+52 +53 +....+ 513 + 514) - (1+ 5 + 52+53 +....+ 512 + 513 )
4S= 514 - 1
S= 514 - 1 :4 =6103515625 -\(\frac{1}{4}\)= 6103515624.75
S: 31 = 6103515624.75 : 31