K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)

Ta thấy:

4/(5x5) < 4/(3x7) = 1/3 – 1/7

4/(9x9) < 4/(7x11) = 1/7 – 1/11

…………

4/(409x409) < 4/(407x411) = 1/407 – 1/411

Mà :

4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411

4S < 136/411

S < 34/411 < 34/408 = 1/12

Hay  S < 1/12

4 tháng 4 2016

4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)

Ta thấy:

4/(5x5) < 4/(3x7) = 1/3 – 1/7

4/(9x9) < 4/(7x11) = 1/7 – 1/11

…………

4/(409x409) < 4/(407x411) = 1/407 – 1/411

Mà :

4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411

4S < 136/411

S < 34/411 < 34/408 = 1/12

Hay  S < 1/12

AH
Akai Haruma
Giáo viên
26 tháng 10 2024

Lời giải:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$

Lại có:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.

17 tháng 7 2017

Ta có : S = 1 + 5+ 5+...+ 512 + 513 

=> S = 1 + 5 + (5+ 53 + 54 ) + (55 + 56 + 57) + ...... + (511 + 512 + 513

=> S = 6 + 52(1 + 5 + 25) + 55(1 + 5 + 25) + ..... + 511(1 + 5 + 25)

=> S = 6 + 52.31 + 55.31 + ..... + 511.31

=> S = 6 + (52.31 + 55.31 + ..... + 511.31)

=> S = 6 + 31(52 + 55 + ..... + 511)

Mà : 31(52 + 55 + ..... + 511) chia hết cho 31

Nên S = 6 + 31(52 + 55 + ..... + 511) chia 31 dư 6 

17 tháng 7 2017

5S= 5+52 +53 +....+ 513 + 514

4S=(5+52 +53 +....+ 513 + 514) - (1+ 5 + 52+53 +....+ 512 + 513 )

4S= 514 - 1 

S=  514 - 1 :4 =6103515625 -\(\frac{1}{4}\)= 6103515624.75

S: 31 = 6103515624.75 : 31