Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-84:4+39.37+50
=-12+1443+50
=1481
9.|40-37|-|2.13-52|
=9.l3l-l-26l
=9.3-26
=1
Ghép 4 số thành một cặp nha
Bởi vì \(1-3+3^2-3^3=-20\) mà -20 chia hết cho 20
Cứ ghép như thế các tổng nhỏ chia hết cho 20 thì khi cộng vào tổng lớn sẽ chia hết cho 20, lười làm như bạn, hướng dẫn thôi
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow S=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(\Rightarrow S=-20+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(\Rightarrow S=-20+...+3^{96}.-20\)
\(\Rightarrow S=-20.\left(1+...+3^{96}\right)⋮20\)
\(\Rightarrow S⋮20\left(đpcm\right)\)
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
b) \(109.5^2-3^2.25\)
\(=109.25-9.25\)
\(=25\left(109-9\right)\)
\(=25.100\)
\(=2500\)
c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)
\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)
\(=\left(5^2.6-20.5\right):10-20\)
\(=\left(25.6-20.5\right):10-20\)
\(=\left(150-100\right):10-20\)
\(=50:10-20\)
\(=5-20\)
\(=-15\)
Vì \(\left(x-y^2+z\right)^2\ge0\)
\(\left(y-2\right)^2\ge0\)
\(\left(z-3\right)^2\ge0\)
Mà \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)
+\(\text{ }\left(y-2\right)^2=0\)
\(\Rightarrow\text{ }y-2=0\)
\(y=0+2\)
\(y=2\)
+ \(\left(z-3\right)^2=0\)
\(\Rightarrow z-3=0\)
\(z=0+3\)
\(z=3\)
+ \(\left(x-y^2+z\right)^2=0\)
\(\Rightarrow x-y^2+z=0\)
\(x-2^2+3=0\)
\(x-4=0-3\)
\(x-4=-3\)
\(x=-3+4\)
\(x=1\)
Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)
a, Ta có: \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7=\left(\dfrac{1}{3^4}\right)^7=\left(\dfrac{1}{3}\right)^{28}=\dfrac{1}{3^{28}}\)
\(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3^5}\right)^6=\left(\dfrac{1}{3}\right)^{30}=\dfrac{1}{3^{30}}\)
Vì \(\dfrac{1}{3^{28}}>\dfrac{!}{3^{30}}\Rightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\Rightarrow\) \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
b, Ta có: \(\left(\dfrac{3}{8}\right)^5=\dfrac{3^5}{\left(2^3\right)^5}=\dfrac{243}{2^{15}}>\dfrac{243}{3^{15}}>\dfrac{125}{3^{15}}=\dfrac{5^3}{\left(3^5\right)^3}=\left(\dfrac{5}{243}\right)^3\)
\(\Rightarrow\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)
Bạn làm sau đó rút gọn là ra s nha
Ta có:
S = 1-3+32-33+...............+398-399
\(\Rightarrow\) 9S = 32-33+35-37+......+3100-3101
\(\Rightarrow\) 9S-S = (32-33+35-37+............+3100-3101)
\(\Rightarrow\) 8S = 3101-1
\(\Rightarrow\) S = (3101-1):8
\(\Rightarrow\) S = (3101-1):8\(⋮\)4 (8\(⋮\)4)
\(\Rightarrow\) S = 3101-1\(⋮\)4
\(\Rightarrow\) S:4 dư 1