Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)^2}{a+1}.\)
b, ta có : \(/a/=5\Rightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
thay a = -5 vào Q
\(\Rightarrow Q=\frac{\left(-5-1\right)^2}{-5+1}=\frac{36}{-4}=-9\)
thay a = 5 vào Q
\(\Rightarrow Q=\frac{\left(5-1\right)^2}{5+1}=\frac{16}{6}=\frac{8}{3}\)
KL : Q = 8/3 tại x=5
\(\text{Đ}K\text{X}\text{Đ}:a\ne1\)
a) Ta có: \(Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(a+1\right)}\)
Vậy ....
b) Ta có: \(\left|a\right|=5\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
Với a=5 ta có: \(Q=\frac{\left(5-1\right)^2}{5+1}=\frac{16}{6}=\frac{8}{3}\)
Với a=-5 ta có: \(Q=\frac{\left(-5-1\right)^2}{-5+1}=\frac{36}{-4}=-9\)
\(Đkxđ:a\ne1\)
\(a,Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{a^3-1-3a^2+3a}{a^2-1}=\frac{\left(a-1\right)\left(a^2+a+1\right)-3a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)\left(a^2-2a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{a^2-2a+1}{a+1}\)
\(b,\left|a\right|=5\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)
Khi \(=5\) thì: \(Q=\frac{5^2-5.2+1}{5+1}=\frac{8}{3}\)
Khi \(=-5\) thì: \(Q=\frac{\left(-5\right)^2+5.2+1}{-5+1}=-9\)
Lời giải:
a) ĐKXĐ: $a\neq \pm 1$
$Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{(a-1)^3}{(a-1)(a+1)}=\frac{(a-1)^2}{a+1}$
b)
Khi $|a|=5\Rightarrow a=\pm 5$
Nếu $a=5\Rightarrow Q=\frac{(5-1)^2}{5+1}=\frac{8}{3}$
Nếu $a=-5\Rightarrow Q=\frac{(-5-1)^2}{-5+1}=-9$
a ) \(Q=\frac{\left(a^3-1\right)-3a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)\left(a^2+a+1\right)-3a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)\left(a^2-2a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(a-1\right)^2}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)^2}{a+1}\)
b ) Để \(Q< 0\) \(\Leftrightarrow\frac{\left(a-1\right)^2}{a+1}< 0\)
Mà \(\left(a-1\right)^2\ge0\) nên \(a+1< 0\Rightarrow a< -1\)
Vậy \(a< -1\)
a) ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\ne-1\\a\ne1\end{cases}}\)
Khi đó P = \(\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)
\(=\left[\frac{2}{3a}-\frac{2}{a+1}.\frac{a+1}{3a}+\frac{2}{a+1}.\left(a+1\right)\right]:\frac{a-1}{a}\)
\(=\left(\frac{2}{3a}-\frac{2}{3a}+2\right):\frac{a-1}{a}=2:\frac{a-1}{a}=\frac{2a}{a-1}\)
b) Ta có P = \(\frac{2a}{a-1}=\frac{2a-2+2}{a-1}=2+\frac{2}{a-1}\)
\(P\inℤ\Leftrightarrow2⋮a-1\Leftrightarrow a-1\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
<=> \(a\in\left\{2;3;0;-1\right\}\)
c) Để P \(\le1\)
<=> \(\frac{2a}{a-1}\le1\)
<=> \(\frac{a+1}{a-1}\le0\)
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}a+1\ge0\\a-1\le0\end{cases}}\Leftrightarrow-1\le a\le1\)
Kết hợp điều kiện => -1 < a < 1 (a \(\ne0\))
TH2 : \(\hept{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow a\in\varnothing\)
Vậy - 1 < a < 1 (a \(\ne0\))
a) Rút gọn
\(Q=\dfrac{a^3-3a^2+3a-1}{a^2-1}\)
= \(\dfrac{a^3-1-3a^2+3a}{\left(a-1\right)\left(a+1\right)}\)
= \(\dfrac{\left(a-1\right)\left(a^2+a+1\right)-3a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}\)
= \(\dfrac{\left(a-1\right)\left(a^2-2a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
= \(\dfrac{\left(a-1\right)^2}{a+1}\)
b)
Tìm giá trị của Q khi |a|=5
**Với a = 5 ta có:
Q= \(\dfrac{\left(5-1\right)^2}{5+1}=\dfrac{4^2}{6}=\dfrac{16}{6}=\dfrac{8}{3}\)
** Với a= -5 ta có:
Q= \(\dfrac{\left(-5-1\right)^2}{-5+1}=\dfrac{\left(-6\right)^2}{-4}=\dfrac{36}{-4}=-9\)
\(\dfrac{a^3-3a^2+3a-1}{a^2-1}=\dfrac{\left(a^3-1\right)-\left(3a^2-3a\right)}{\left(a+1\right)\left(a-1\right)}\)\(\dfrac{\left(a-1\right)\left(a^2+a+1\right)-3a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}=\dfrac{\left(a-1\right)\left(a^2-2a+1\right)}{\left(a-1\right)\left(a+1\right)}=\dfrac{\left(a-1\right)\left(a-1\right)^2}{\left(a-1\right)\left(a+1\right)}\)\(\dfrac{\left(a-1\right)^2}{a+1}\)