Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tử A là T ta có:
5T=5(1+5+52+...+59)
5T=5+52+...+510
5T-T=(5+52+...+510)-(1+5+52+...+59)
T=(510-1)/4
Mẫu A là H tính tương tự đc:(59-1)/4.Thay vào ta có:\(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}\)
B tính tương tự A được \(\frac{3^{10}-1}{3^9-1}\) tới đây sao nx
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}.\)
\(A=\frac{1}{2}-\frac{1}{100}=\frac{100}{200}-\frac{2}{200}=\frac{98}{200}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{50}{100}-\frac{1}{100}=\frac{50-1}{100}=\frac{49}{100}\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình
\(A=3^1+3^2+...+3^{2006}\)
\(3A=3^2+3^3+...+3^{2007}\)
\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3^1+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
\(2A+3=3^x\)
\(\left(3^{2007}-3\right)+3=3^x\)
\(3^{2007}+\left(-3\right)+3=3^x\)
\(3^{2007}+\left[\left(-3\right)+3\right]=3^x\)
\(\Rightarrow3^{2007}=3^x\)
\(\Rightarrow x=2007\)
a) A bằng 31+32+33+34+...+32006
3A bằng 3.(31+32+33+34+...+32006)
3A bằng 32+33+34+35+...+32007
3A-A bằng (32+33+34+35+...+32007) - (31+32+33+34+...+32006)
2A bằng 32007-31
A bằng (32007-3) : 2
b) 2A+3 bằng 3x
Thay 2A bằng 32007-3, ta có :
2A+3 bằng 3x
32007-3+3 bằng 3x
32007 bằng 3x
suy ra x bằng 2007
Vậy x bằng 2007
Để \(M\in Z\)thì x + 2 chia hết cho 3
=> \(x=3k+1\left(k\in Z\right)\)
Vậy với \(x=3k+1\left(k\in Z\right)\)thì \(M\in Z\)
\(M\in Z\)=>x+2 chia hết cho 3
=>x+2=3k ( \(k\in Z\))
x=3k-2 ( \(k\in Z\))
Với x=3k-2 thì M thuộc Z
2, <=> \(\left|2x-6\right|+\left|2x+5\right|=11\)
<=> \(\left|6-2x\right|+\left|2x+5\right|=11\)
Ta có : \(\left|6-2x\right|+\left|2x+5\right|\ge\left|6-2x+2x-5\right|=\left|11\right|=11\)
Dấu = xảy ra khi : \(\left(6-2x\right)\left(2x+5\right)\ge0\)
Áp dụng tính chất ngoài-đồng trong-khác :D ta có :
\(-\frac{5}{2}\le x\le3\).
Bài 1 :
\(a)\) Ta có :
\(2^{31}+8^{10}+16^8=2^{31}+2^{30}+2^{32}=2^{30}\left(2+1+4\right)=2^{30}.7\) chia hết cho 7
Vậy \(2^{31}+8^{10}+16^8⋮7\)
a) \(y+2\frac{3}{4}=5\frac{2}{3}\)
\(y+\frac{11}{4}=\frac{17}{3}\)
y = 35/12
b) \(y-1\frac{4}{5}=3\frac{2}{7}\)
y - 9/5 = 23/7
y = 178/35
\(a,y+2\frac{3}{4}=5\frac{2}{3}\)
\(\Rightarrow y+\frac{11}{4}=\frac{17}{3}\)
\(\Rightarrow y=\frac{17}{3}-\frac{11}{4}\)
\(\Rightarrow y=\frac{35}{12}\)
\(b,y-1\frac{4}{5}=3\frac{2}{7}\)
\(\Rightarrow y=3\frac{2}{7}-1\frac{4}{5}\)
\(\Rightarrow y=\frac{52}{35}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{c+d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)
Q=(2+2^2)+(2^3+2^4)+...+(2^10+2^11)
Q=2(1+2)+2^3(1+2)+...+2^10(1+2)
Q=2.3+2^3.3+....+2^10.3 chia hết cho 3
tương tự như trên nhóm 5 số vào 1 nhóm nhà bạn cho mình nhé