K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

bài này h bạn tìm đenta

sau đó cho đenta lớn hơn 0

sau đó đc kq là gì ib cho mik mik ns tiếp cho

23 tháng 4 2019

Hoành độ giao điểm (d) và (P) là nghiệm của pt

\(x^2-mx-3=0\)

Có \(\Delta=m^2+3>0\forall m\)

Nên pt trên có 2 nghiệm phân biệt

GỌi A(x1;y1) và B(x2;y2) là 2 giao điểm (d) và (P)

Theo Vi=ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

VÌ A;B thuộc parabol => y1 = x12     ; y2 = x22

Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(\Rightarrow AB^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)

               \(=\left(x_1+x_2\right)^2-4x_1x_2+\left(x_1^2-x_2^2\right)^2\)

              \(=m^2+12+\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2\)

                 \(=m^2+12+m^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\)

                \(=m^2+12+m^2\left(m^2+12\right)\)

               \(=m^4+13m^2+12\ge0+0+12=12\)

\(\Rightarrow AB\ge\sqrt{12}=2\sqrt{3}\left(Do....AB>0\right)\)

Dấu "=" xảy ra <=> m = 0

Vậy .......

NV
23 tháng 4 2019

Phương trình hoành độ giao điểm: \(x^2-mx-3=0\)

\(ac< 0\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt dó hoành độ trái dấu

Theo Viet ta có: \(\left\{{}\begin{matrix}x_A+x_B=m\\x_Ax_B=-3\end{matrix}\right.\)

\(AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2\)

\(AB^2=\left(x_A-x_B\right)^2+m^2\left(x_A-x_B\right)^2\) (thay \(y_A=mx_A+3\)\(y_B\) vào)

\(AB^2=\left(1+m^2\right)\left(x_A-x_B\right)^2\)

\(AB^2=\left(1+m^2\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)

\(AB^2=\left(1+m^2\right)\left(m^2+12\right)\)

\(AB^2=m^4+13m^2+12\ge12\) (do \(m^2\ge0\))

\(\Rightarrow AB_{min}=2\sqrt{3}\) khi \(m=0\)

a: PTHĐGĐ là;

1/2x^2-mx-2=0

a=1/2; b=-m; c=-2

Vì a*c<0 nên (d) luôn cắt (P) tại hai điểm phân biệt

4 tháng 4 2016

quá dễ

4 tháng 4 2016

Ko khó

25 tháng 4 2018

Phương trình hoành độ giao điểm của (d) và (P):

=> x^2 = (2m+2)x-m^2-2m

<=>x^2 -(2m+2)x+m^2+2m=0

(a=1;b=-(2m+2);c=m^2+2m)

Để 2 (d) cắt (P) tại 2 điểm phân biệt => \(\Delta\) >0

<=> (2m+2)^2-4(m^2+2m)>0

<=> 4m^2+8m+4-4m^2-8m>0

<=> 4>0 (luôn đúng)

Theo hệ thức Vi ét ta có: \(\hept{\begin{cases}x1+x2=2m+2\\x1.x2=m^2+2m\end{cases}}\)

x1+x2=5  <=> 2m+2=5 <=> 2m=3 <=> m=3/2.

(Mình cứ thấy nó sai sai và thiếu thiếu sao ý, cái đề ý)

31 tháng 5 2018

tôi ko bt