K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có P(x)=3x^4+x^2+1/4

   Vì 3x^4 \(\ge\) 0  Với mọi x

         x^2 \(\ge\) 0   Với mọi x

    nên 3x^4+x^2 \(\ge\) 0 với mọi x

=>3x^4+x^2+1/4 \(\ge\) 0+1/4 >0   với mọi x

=>P(x) > với mọi x 

Vậy P(x) vô nghiệm

 

25 tháng 4 2017

a. P(x)+Q(x)=(3x4 + x3- x2- \(\dfrac{1}{4}\)x)+(3x4- 4x3+x2-\(\dfrac{1}{4}\))=6x4-3x3+\(\dfrac{1}{2}\)

Tương tự làm P(x)-Q(X) nhé !!!

b. Thay x = 0 vào đa thức P(x) ta có :

.....................................................

thay x = 0 vào đa thức Q(x) ta có:

......................................................

=> đpcm

22 tháng 4 2018

Ta có :

x4 + 3x2 + 3

= ( x2 )2 + 2 . \(\frac{3}{2}\). x2 + \(\left(\frac{3}{2}\right)^2\)\(\frac{3}{4}\)

= ( x2 + \(\frac{3}{2}\))2 + \(\frac{3}{4}\)> 0

Vậy ...

22 tháng 4 2018

thank bạn nhìu

21 tháng 4 2016

  Ta có: x2+x+x+1+4                                                                                                                                                                                      \(\leftrightarrow\) (x2+x)+(x+1)+4                                                                                                                                                                              \(\leftrightarrow\) x.(x+1)+(x+1)+4                                                                                                                                                                            \(\leftrightarrow\) (x+1).(x+1)+4\(\leftrightarrow\) (x+1)2+4                                                                                                                                                             Vì (x+1)2 luôn >hoặc = 0 \(\Rightarrow\) (x+1)2+4 luôn > hoặc = 4                                                                                                                           Vậy đa thức vô nghiệm

                                                                                                                              

21 tháng 4 2016

Hồi cô dạy mình vì mũ 2 mà cộng nữa chắn chắn sẽ lớn hơn 0

jfksgdksdbgkj

10 tháng 5 2018

\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)

                                                     \(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

                                                        = \(\left(x^2+2\right)\left(x^2+x+1\right)\)

Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)

Suy ra , đa thức trên vô nghiệm 

9 tháng 4 2017

Chạy tiếp sức

(a) bản chất chỉ là bước đệm để làm câu (b)

b)

lấy kq câu (a) của @ trước đó

\(M\left(x\right)=x^4+\dfrac{21}{4}x^2+\dfrac{1}{4}x^2+x+1+5\)

\(M\left(x\right)=x^4+\dfrac{21}{4}x^2+\left(\dfrac{x}{2}+1\right)^2+5\)

\(\left\{{}\begin{matrix}x^4\ge0\forall x\\\dfrac{21}{4}x^2\ge0\forall x\\\left(\dfrac{x}{2}+1\right)^2\ge0\forall x\\\end{matrix}\right.\) =>\(M\left(x\right)=x^4+\dfrac{21}{4}x^2+\left(\dfrac{x}{2}+1\right)^2+5>0\)với mọi x => M(x) không có nghiệm=> Nếu (a) đúng => dpcm

9 tháng 4 2017

a) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(=x^4-5x+2x^2+1+5x+3x^2+5+\dfrac{1}{2}x^2+x\\ =x^4+\dfrac{11}{2}x^2+x+6\)

16 tháng 4 2016

Vì x4 \(\ge\) 0 với mọi x \(\in\) R

   3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R

=>P(x) vô nghiệm

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

20 tháng 7 2016

a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0

=> pt vô nghiệm

b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3

           = (x+1/3)2+1/3>0

=> pt vô nghiệm.

20 tháng 7 2016

\(a,f\left(x\right)=x^2-10x+27\)

\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)

\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)

\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\)  (Vì \(\left(x-5\right)^2\ge0\)  \(Vx\) )

Vậy đa thức f(x) vô nghiệm

\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)

\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)

\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)

\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)  (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\)  \(Vx\) )

Vậy đa thức g(x) vô nghiệm

13 tháng 4 2016

có \(x^4+x^2\ge0\)

=> đa thức trên <0 

=> đt trên vô nghiệm

chú ý: đây là toán lớp 8 mà