Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left[2\left(m+1\right)\right]^2-4m^2=4m+1\)
a) để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow4m+1>0\Leftrightarrow m>\frac{-1}{4}\)
b) thay x = -2 vào pt , ta được :
\(\left(-2\right)^2+2\left(m+1\right)\left(-2\right)+m^2=0\)
\(\Rightarrow m^2-4m=0\Rightarrow\orbr{\begin{cases}m=0\\m=4\end{cases}}\)
a) Phương trình có 2 nghiệm phân biệt:
<=> \(\Delta'=\left(m+1\right)^2-m^2>0\)
<=> m > -1/2
Vậy....
b) Phương trình có 2 nghiệm phân biệt trong đó có 1 nghiệm x = - 2
Thay x = -2 vào ta có: \(m^2-4\left(m+1\right)+4=0\)
<=> m = 0 (thỏa mãn )
hoặc m = 4 ( thỏa mãn)
Vậy ...
Phương trình có nghiệm là x = 2. Thay x = 2 vào phương trình để tìm m:
\(2^2-2\left(m+4\right)+3m+3=0\)
\(4-2m-8+3m+3=0\)
\(-1+m=0\)
\(m=1\)
Vậy phương trình có nghiệm x = 2 khi m = 1
Phương trình có nghiệm là x = 2. Thay x = 2 vào phương trình để tìm m:
$2^2-2\left(m+4\right)+3m+3=0$22−2(m+4)+3m+3=0
$4-2m-8+3m+3=0$4−2m−8+3m+3=0
$-1+m=0$−1+m=0
$m=1$m=1
Vậy phương trình có nghiệm x = 2 khi m = 1