K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

123 + 345 = 468

468 + 567 = 1035

1035 - 236 = 799

799 - 189 = 610

610 + 853 = 1463

27 tháng 2 2019

a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)

PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)

\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)

\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)

b) Vi-ét

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)

\(\Rightarrow-2m^2+6m+4=8\)

Tính m ra

c) \(x^2_1+x^2_2=-2m^2+6m+4\)

\(=-2\left(m^2-3m-2\right)\)

\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)

Lập luận để tìm ra GTNN

8 tháng 4 2020

8.1/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(m-9\right)^2-4.\left(-7\right)=m^2-18m+109>0\Leftrightarrow m\in R\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=m+9\\x_1x_2=-7< 0\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=16\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=256\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=256\Leftrightarrow\left(m+9\right)^2=256-2\left(-7\right)-2\left|-7\right|=256\)

\(\Leftrightarrow\left(m+9\right)^2=256\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)

NV
2 tháng 3 2019

\(\Delta=\left(2m-1\right)^2-4\left(m^2-3m+4\right)=8m-15\ge0\Rightarrow m\ge\dfrac{15}{8}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-3m+4\end{matrix}\right.\)

Ta thấy \(x=0\) không phải là nghiệm với mọi m nên biểu thức cuối bài luôn xác định

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=1\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=1\Leftrightarrow x_1+x_2=x_1x_2\)

\(\Leftrightarrow2m-1=m^2-3m+4\Leftrightarrow m^2-5m+5=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{5}}{2}\\m=\dfrac{5-\sqrt{5}}{2}< \dfrac{15}{8}\left(l\right)\end{matrix}\right.\)

Vậy \(m=\dfrac{5+\sqrt{5}}{2}\)

a: Khi m=2 thì pt sẽ là \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(x_1+x_2=x_1\cdot x_2\)

\(\Leftrightarrow m^2-2m=2\left(m-1\right)=2m-2\)

\(\Leftrightarrow m^2-4m+2=0\)

\(\Leftrightarrow\left(m-2\right)^2=2\)

hay \(m\in\left\{\sqrt{2}+2;-\sqrt{2}+2\right\}\)

8 tháng 4 2020

8.4/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m+5\right)^2-\left(m^2+6\right)=10m+19>0\Leftrightarrow x>-\frac{19}{10}\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+5\right)\\x_1x_2=m^2+6>0\forall x\in R\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+\left|x_2\right|=16\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=256\Leftrightarrow\left(x_1+x_2\right)=256\)

\(\Leftrightarrow-2\left(m+5\right)=256\Leftrightarrow m+5=-128\Leftrightarrow m=-133\) (không t/m)

Vậy khôn tồn tại m thõa mãn ycbt

8 tháng 4 2020

8.3/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m-4\right)^2-\left(m^2+7\right)=-8m+9>0\) \(\Leftrightarrow m< \frac{9}{8}\)

Theo định lý \(viete:\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2+7>0\forall x\in R\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+\left|x_2\right|=12\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=144\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=\left(x_1+x_2\right)=144\)

\(\Leftrightarrow2\left(m+4\right)=144\Leftrightarrow m+4=72\Leftrightarrow m=68\) (T/m)

KL: ...........