Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta\)= b2-4ac=\([-2\left(m-1\right)\)2-4.1.(m-3)
=4(m2-2m+1)-4m+12
=4m2-12m+16=(2m-3)2+7>0
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b)Vì pt luôn có 2 nghiệm phân biệt với m
Theo vi ét ta có:x1+x2=\(\frac{-b}{a}\)= 2m-2=S (1)
x1.x2=\(\frac{c}{a}\)=m-3=P (2)
Từ(1)\(\Rightarrow2m=S+2\)
\(\Rightarrow m=\frac{S+2}{2}\left(3\right)\)
Từ(2)\(\Rightarrow m=P-3\left(4\right)\)
Từ (3) và(4)\(\Rightarrow\frac{S+2}{2}=P-3\)
\(\Leftrightarrow S+2-2P+6=0\)
\(\Leftrightarrow S-P+8=0\)
Do đó\(\Leftrightarrow\left(x_1+x_2\right)-\left(x._1.x_2\right)+8=0\left(đfcm\right)\)
\(x^2+\left(m-1\right)x+m-2=0\left(1\right)\)
a, Với m = -2
\(\left(1\right)\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)
b, \(\Delta=\left(m-1\right)^2-4\left(m-2\right)=m^2-2m+1-4m+8=m^2-6m+9=\left(m-3\right)^2\ge0\)
Vậy phương trình luôn có 2 nghiệm với mọi m.
c, Theo vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=1-m\\x_1.x_2=m-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=1-x_1-x_2\\m=x_1x_2+2\end{cases}}\)
\(\Leftrightarrow1-x_1-x_2=x_1x_2+2\Leftrightarrow x_1+x_2+x_1x_2=-1\)
Đây là hệ thức cần tìm.
a,Với \(m=2\)thì phương trình trên tương đương với :
\(x^2-4x-4+12-5=0\)
\(< =>x^2-4x+3=0\)
Ta dễ dàng nhận thấy : \(1-4+3=0\)
Nên phương trình sẽ có 2 nghiệm phân biệt là \(\hept{\begin{cases}x_1=1\\x_2=3\end{cases}}\)
b,Để phương trình luôn có nghiệm : \(\Delta\ge0\)
\(< =>\left(-4\right)^2-4\left(-m^2+6m-5\right)\ge0\)
\(< =>16+4m^2-24m+20\)
\(< =>\left(2m\right)^2-2.2.m.6+6^2=\left(2m-6\right)^2\ge0\)(đúng)
c,Theo bất đẳng thức AM-GM thì :
\(x_1^3+x_2^3\ge2\sqrt[2]{x_1^3x_2^3}=2x_1x_2\)
Nên ta được : \(P\ge2x_1x_2\)
Mặt khác theo hệ thức Vi ét thì : \(x_1x_2=-m^2+6m-5\)
\(< =>P\ge-2m^2+12m-10\)
\(< =>P\ge-\left(\sqrt{2}m\right)^2+2\left(-\sqrt{2}m\right)\left(-\sqrt{18}\right)+\left(-\sqrt{18}\right)^2\)
\(< =>P\ge\left[-\sqrt{2}m.\left(-\sqrt{18}\right)\right]^2-28\)
Đẳng thức xảy ra khi và chỉ khi \(m=0\)
Vậy \(Min_P=-28\)khi \(m=0\)
x2 - 4x - m2 + 6m - 5 = 0
Với m = 2 ta có :
x2 - 4x - m2 + 6m - 5 = 0
<=> x2 - 4x - 22 + 2.6 - 5 = 0
<=> x2 - 4x - 4 + 12 - 5 = 0
<=> x2 - 4x + 3 = 0
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot3=16-12=4\)
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{4}}{2}=3\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{4}}{2}=1\)
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
1.a
ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)
= m^2-m^2+1=1>0
vậy pt luôn có 2 no vs mọi m
a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)
Vậy pt luôn có 2 nghiệm với mọi m
b)
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)
vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)
c)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)
\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)