K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

a) \(\Delta\)= b2-4ac=\([-2\left(m-1\right)\)2-4.1.(m-3)

                           =4(m2-2m+1)-4m+12

                                =4m2-12m+16=(2m-3)2+7>0

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b)Vì pt luôn có 2 nghiệm phân biệt với m

Theo vi ét ta có:x1+x2=\(\frac{-b}{a}\)= 2m-2=S (1)

                     x1.x2=\(\frac{c}{a}\)=m-3=P (2)

Từ(1)\(\Rightarrow2m=S+2\)

          \(\Rightarrow m=\frac{S+2}{2}\left(3\right)\)

Từ(2)\(\Rightarrow m=P-3\left(4\right)\)

Từ (3) và(4)\(\Rightarrow\frac{S+2}{2}=P-3\)

               \(\Leftrightarrow S+2-2P+6=0\)

               \(\Leftrightarrow S-P+8=0\)

Do đó\(\Leftrightarrow\left(x_1+x_2\right)-\left(x._1.x_2\right)+8=0\left(đfcm\right)\)

12 tháng 3 2019

\(x^2+\left(m-1\right)x+m-2=0\left(1\right)\)

a, Với m = -2

\(\left(1\right)\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)

b, \(\Delta=\left(m-1\right)^2-4\left(m-2\right)=m^2-2m+1-4m+8=m^2-6m+9=\left(m-3\right)^2\ge0\)

Vậy phương trình luôn có 2 nghiệm với mọi m.

c, Theo vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=1-m\\x_1.x_2=m-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=1-x_1-x_2\\m=x_1x_2+2\end{cases}}\)

\(\Leftrightarrow1-x_1-x_2=x_1x_2+2\Leftrightarrow x_1+x_2+x_1x_2=-1\)

Đây là hệ thức cần tìm.

12 tháng 7 2020

a,Với \(m=2\)thì phương trình trên tương đương với :

\(x^2-4x-4+12-5=0\)

\(< =>x^2-4x+3=0\)

Ta dễ dàng nhận thấy : \(1-4+3=0\)

Nên phương trình sẽ có 2 nghiệm phân biệt là \(\hept{\begin{cases}x_1=1\\x_2=3\end{cases}}\)

b,Để phương trình luôn có nghiệm : \(\Delta\ge0\)

\(< =>\left(-4\right)^2-4\left(-m^2+6m-5\right)\ge0\)

\(< =>16+4m^2-24m+20\)

\(< =>\left(2m\right)^2-2.2.m.6+6^2=\left(2m-6\right)^2\ge0\)(đúng)

c,Theo bất đẳng thức AM-GM thì :

\(x_1^3+x_2^3\ge2\sqrt[2]{x_1^3x_2^3}=2x_1x_2\)

Nên ta được : \(P\ge2x_1x_2\)

Mặt khác theo hệ thức Vi ét thì : \(x_1x_2=-m^2+6m-5\)

\(< =>P\ge-2m^2+12m-10\)

\(< =>P\ge-\left(\sqrt{2}m\right)^2+2\left(-\sqrt{2}m\right)\left(-\sqrt{18}\right)+\left(-\sqrt{18}\right)^2\)

\(< =>P\ge\left[-\sqrt{2}m.\left(-\sqrt{18}\right)\right]^2-28\)

Đẳng thức xảy ra khi  và chỉ khi \(m=0\)

Vậy \(Min_P=-28\)khi \(m=0\)

12 tháng 7 2020

x2 - 4x - m2 + 6m - 5 = 0

Với m = 2 ta có :

x2 - 4x - m2 + 6m - 5 = 0

<=> x2 - 4x - 22 + 2.6 - 5 = 0

<=> x2 - 4x - 4 + 12 - 5 = 0

<=> x2 - 4x + 3 = 0

\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot3=16-12=4\)

\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{4}}{2}=3\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{4}}{2}=1\)

21 tháng 5 2016

a) x1^2+x2^2=(x1+x2)^2-2x1x2

x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)

áp dụng viét thay vô

b) giải hệ pt

đenta>=0

x1+x2=-m

x1x2=m+3

và 2x1+3x2=5

c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại

d)áp dụng viét 

x1+x2=-m

x1x2=m+3

CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3

26 tháng 3 2019

1.a

ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)

 = m^2-m^2+1=1>0

vậy pt luôn có 2 no vs mọi m

26 tháng 3 2019

a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)

Vậy pt luôn có 2 nghiệm với mọi m

b)

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)

vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)

c)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)

\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)