K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2023

Để pt \(x^2+2\left(m+1\right)x+m^2+1=0\) có 2 nghiệm trái dấu thì \(\dfrac{c}{a}< 0\)

\(\Leftrightarrow m^2+1< 0\)

\(\Leftrightarrow m^2< -1\left(ktm\right)\)

Vậy m không xác định

18 tháng 3 2023

∆' = m² + 2m + 1 - m² - 1

= 2m

Để phương trình đã cho có 2 nghiệm trái dấu thì:

∆' > 0 và P = x₁ . x₂ < 0

*) ∆´ > 0

2m > 0

m > 0

*) x₁.x₂ < 0

m² + 1 < 0 

m² < -1 (vô lý)

Vậy không tìm được m để phương trình đã cho có 2 nghiệm trái dấu

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

25 tháng 8 2017

cho pt:x^2-ax+1=0.giả sử py có 2 nghiệm x1,x2.tính giá trị biểu thức S=x1^5+x2^5 theo a

18 tháng 3 2023

Để pt \(x^2+2\left(m+1\right)x+m^2=0\) có 2 nghiệm trái dấu thì \(\dfrac{c}{a}< 0\)
\(\Leftrightarrow m^2-1< 0\)

\(\Leftrightarrow m^2< 1\)

\(\Leftrightarrow m< \pm1\)

NV
18 tháng 3 2023

Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Rightarrow m^2-1< 0\)

\(\Rightarrow-1< m< 1\)

a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)

\(=4m^2-4m+1-4m+4=4m^2-8m+5\)

\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì m-1<0

hay m<1

loading...  loading...  loading...  

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

NV
18 tháng 1 2022

Pt có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Rightarrow1.\left(m-1\right)< 0\Rightarrow m< 1\)

Mặt khác theo Viet: \(x_1+x_2=-2< 0\)

\(\Rightarrow\) Nghiệm âm có giá trị tuyệt đối lớn hơn