K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2020

\(A=\frac{2\left(x_1+x_2\right)+7}{\left(x_1+x_2\right)^2-2x_1x_2}=\frac{2m+7}{m^2+8}\)

\(\Rightarrow A=\frac{m^2+8-\left(m^2-2m+1\right)}{m^2+8}=1-\frac{\left(m-1\right)^2}{m^2+8}\le1\)

\(A_{max}=1\) khi \(m=1\)

10 tháng 5 2018

xét pt \(x^2-mx+m-1=0\)  \(\left(1\right)\)

xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)

\(\Rightarrow pt\)  (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)

ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)

\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)

nếu \(m-1< 0\Rightarrow m^2-4m-32=0\)  ta tìm được \(m=8\left(loai\right)\)\(m=-4\left(TM\right)\)

nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)

vậy \(m=-4;m=6\)  là các giá trị cần tìm 

10 tháng 5 2018

b) \(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)

\(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2\left(m-1\right)+3}{m^2+2}\)

\(P=\frac{2m-2+3}{m^2+2}=\frac{2m+1}{m^2+2}\)

vậy \(P=\frac{2m+1}{m^2+2}\)

NV
14 tháng 5 2020

\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)

\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)

Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định

\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)

Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)

\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)

\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)

\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)

\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)

Thay vào B:

\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)

\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)

Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)

\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)

20 tháng 5 2018

-_-         1/ bạn làm đc

-_-         2/ Bạn hỏi suốt xao giỏi đc

-_-         3/ Bài này dễ ợt

\(mx^2-2\left(m+2\right)x+m^2+7=0\left(a=m;b=-2m-4;c=m^2+7\right)\)

\(\Delta=\left(-2m-4\right)^2-4m\left(m^2+7\right)=4m^2-16-4m^3-28m\ge0\)

Để pt có 2 nghiệm thì \(\Delta\ge0\)P/s : ko chắc cái ĐK này 

Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{2m+4}{2};x_1x_2=\frac{m^2+7}{2}\)

Theo bài ra ta có : \(x_1x_2-2\left(x_1x_2\right)=0\)

\(\Leftrightarrow\frac{m^2+7}{2}-2\left(\frac{m^2+7}{2}\right)=0\)

\(\Leftrightarrow\frac{m^2+7}{2}-\frac{2m^2+14}{2}=0\)Khử mẫu ta đc : \(m^2+7-2m^2+14=0\)

\(\Leftrightarrow-m^2+21=0\Leftrightarrow-m^2=-21\Leftrightarrow m^2=21\Leftrightarrow m=\pm\sqrt{21}\)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
NV
31 tháng 8 2020

Bạn xem lại đề bài

\(2m^2-2mx....\) có gì đó sai sai

6 tháng 9 2019

x2 -(m-1)x - 6 = 0  coi lại đề bài hộ  dấu trừ t1 viết thành  = à :) 

để pt có 3 nghiệm phân biệt khi và chỉ khi  \(\Delta>0\) 

 <=> (m-1)2 +4.6 >0 

<=> (m-1)+24 >0 ( luôn đúng )

vậy pt lun có 2 nghiệm phân biệt với mọi m 

theo hệ thức vi ét ta có 

x1+x2 = m-1 

x1.x2=-6

A= (x1-9 )(x2-4 )

A= (x1.x2)-4x1-9x2+36 

A= (x1.x2 )

đéo biết  đê fbài sai hoặc t sai ))