Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
Mobilegends nữa ko : (((((( 32k vàng rồi nha
Bài này t có thể xài \(\Delta\)hay \(\Delta'\)đều được nhé vì bài này hệ số b chia hết cho 2 nên xài \(\Delta'\)đi cho nó easy hơn 1 tí >:
Công thức: \(\Delta'=b'^2-ac\) chứ xài \(\Delta=b^2-4ac\) nó dài hơn tí
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m-4\right).1\)
\(\Delta'=m^2+2m+1-2m+4\)
\(\Delta'=m^2+5>0\) ( luôn đúng )
P/s câu a chỉ cần chứng minh pt đó lớn hơn 0 sẽ có 2 nghiệm phân biệt
b) \(x_1;x_2\) là 2 nghiệm phân biệt của phương trình ( gt )
Xài hệ thức vi - ét =)
\(3\left(x_1+x_2\right)=5x_1x_2\)\(\Leftrightarrow6\left(m+1\right)=5\left(2m-4\right)\)
Tới đây easy rồi giải nốt vs kết luận đi nha :))))
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m