Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có để pt có 2 nghiệm phân biệt thì:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)
\(\Leftrightarrow m< 2\)
Theo vi-et ta có
\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)
Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)
\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow19m+52=0\)
\(\Leftrightarrow m=\frac{52}{19}\)(loại)
Không có m thỏa cái trên
PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé
tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt
áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên
rồi kết luận
\(x^2+2\left(m+2\right)x+4m-1=0\) \(\left(1\right)\)
\(\Delta'=\left(m+2\right)^2-4m+1\)
\(\Delta'=m^2+4m+4-4m+1\)
\(\Delta'=m^2+5>0\forall m\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm pb \(\forall m\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)
theo bài ra \(x^2_1+x^2_2=30\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)
\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)
\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)
\(\Leftrightarrow4m^2+16m+16-8m-28=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow m^2+2m-3=0\) \(\left(#\right)\)
từ \(\left(#\right)\) ta có \(a+b+c=1+2-3=0\)
\(\Rightarrow pt\left(#\right)\) có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) )
vậy....
Pt có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-20m+20\ge0\)
\(\Leftrightarrow m^2-22m+21\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)
Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)
\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)
\(\Leftrightarrow1-2m+m^2=25m-25\)
\(\Leftrightarrow m^2-27m+26=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)
Vậy .........