K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

9 tháng 2 2022

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

9 tháng 2 2022

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)

7 tháng 7 2015

bạn cap cả bài nhìn đau mắt gê :3

7 tháng 7 2015

a) Thay \(m=-5\) vào PT ta được:

\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)

\(\Rightarrow x^2+5x-10-3=0\)

\(\Rightarrow x^2+5x-13=0\)

\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)

PT có 2 nghiệm phân biệt:

\(x_1=-\frac{5+\sqrt{77}}{2}\)

\(x_2=-\frac{5-\sqrt{77}}{2}\)

Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)

b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)

\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)

\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)

Vậy với m = 2 và m = 6 thì PT có nghiệm kép.

c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)

Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.

d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)

\(\Rightarrow m=S^{\left(1d\right)}\)

              \(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)

\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)

Từ \(\left(1d\right)\&\left(2d\right)\)

\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)

\(\Rightarrow P+3-2S=0\)

\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)

\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)

Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.

e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)

8 tháng 4 2018

a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)

8 tháng 4 2018

Cho mình bổ sung thêm phần xác định m chút nha

Áp dụng hệ thức viets vào phương trình (1 ) ta có

\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\)  Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)