Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a*c=-3<0
nên phương trình luôn có 2 nghiệm pb
x1^2+x2^2=10
=>(x1+x2)^2-2x1x2=10
=>(2m+2)^2+6=10
=>(2m+2)^2=4
=>2m+2=2 hoặc 2m+2=-2
=>m=-2 hoặc m=0
\(\Delta'=9-\left(2n-3\right)=12-2n>0\Rightarrow n< 6\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-6x_1+2n-3=0\Leftrightarrow x_1^2-5x_1+2n-4=x_1-1\)
Tương tự ta có: \(x_2^2-5x_2+2n-4=x_2-1\)
Thế vào bài toán:
\(\left(x_1-1\right)\left(x_2-1\right)=-4\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\)
\(\Leftrightarrow2n-3-6+1=-4\Rightarrow n=2\)
Tại mk lười dùng delta nên bn làm delta cũng tương tự vậy nha!
Ta có: x2 - 4x + 5m - 2 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 5m - 6 = 0
\(\Leftrightarrow\) (x - 2)2 = 6 - 5m
\(\Leftrightarrow\) x - 2 = \(\pm\)\(\sqrt{6-5m}\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x_1=\sqrt{6-5m}+2\\x_2=-\sqrt{6-5m}+2\end{matrix}\right.\)
Ta có: x12 . x2 + x1 . x22 = 12
\(\Leftrightarrow\) (\(\sqrt{6-5m}+2\))2. \(\left(-\sqrt{6-5m}+2\right)\) + \(\left(\sqrt{6-5m}+2\right)\) \(\left(-\sqrt{6-5m}+2\right)^2\) = 12
\(\Leftrightarrow\) (4 - 6 + 5m)(\(\sqrt{6-5m}+2-\sqrt{6-5m}+2\)) = 12
\(\Leftrightarrow\) (-2 + 5m).4 = 12
\(\Leftrightarrow\) -2 + 5m = 3
\(\Leftrightarrow\) m = 1
Vậy ...
Chúc bn học tốt!
PT có 2 nghiệm phân biệt `<=> \Delta' >0`
`<=> (m-2)^2+m^2+4m>0`
`<=> 2m^2-4>0`
`<=> x< -2\sqrt2 ; \sqrt2 <x`
Viet: `x_1+x_2=2m-4`
`x_1x_2=-m^2-4m`
Theo đề: `x_1^3-x_2^3=(x_1-x_2)(x_1^2+x_1x_2+x_2^2)`
`=(x_1-x_2)[(x_1+x_2)^2 -x_1x_2]`
`=\sqrt((x_1+x_2)^2-4x_1x_2) [(x_1+x_2)^2-x_1x_2]`
`= \sqrt((2m-4)^2+4(m^2+4m)) [(2m-4)^2 +m^2+4m]`
`= \sqrt(8m^2 +16) (5m^2-12m+16)`
định hướng nha
ta có △= (-6)2-4m = 36-4m
để pt có 2 no → 36-4m >=0⇔ m<=9
theo viet ta có x1+x2= 6(1), x1x2= m(2)
do x13+x23=72⇔ (x1+x2).[(x1+x2)2 -x1x2]
thay viet vào thì ta tìm đc m nk.
m = 24(ktm) vậy ko có no nào tm. ok