K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 3 2024

Lời giải:
$p^4+2019q^4=p^4-q^4+2020q^4$

$=(p^2-q^2)(p^2+q^2)+2020q^4$
Vì $p,q$ là số nguyên tố lớn hơn 5 nên $p,q$ không chia hết cho 5.

$\Rightarrow p^2,q^2$ không chia hết cho 5.

Ta biết rằng 1 scp khi chia 5 dư $0,1,4$. 

Vì $p^2,q^2$ là scp và không chia hết cho 5 nên $p^2,q^2$ chia 5 dư $1,4$

Nếu $p^2,q^2$ cùng chia 5 dư 1 hoặc dư 4 thì $p^2-q^2\vdots 5$

$\Rightarrow (p^2-q^2)(p^2+q^2)\vdots 5$

$\Rightarrow p^4+2019q^4=(p^2-q^2)(p^2+q^2)+2020q^4\vdots 5$

Nếu $p^2,q^2$ khac số dư khi chia cho 5 thì 1 số chia 5 dư 1 và 1 số chia 5 dư 4

$\Rightarrow p^2+q^2$ chia 5 dư $1+4=5$ (hay dư 0)

$\Rightarrow p^2+q^2\vdots 5$

$\Rightarrow (p^2-q^2)(p^2+q^2)\vdots 5$

$\Rightarrow p^4+2019q^4=(p^2-q^2)(p^2+q^2)+2020q^4\vdots 5$

Từ hai TH trên ta có kết luận $p^4+2019q^4\vdots 5$

 

7 tháng 1 2023

giúp mình với mình cần gấp

 

31 tháng 3 2016

p là số nguyên tố >5=>p lẻ ,p kochia hết cho 3=>p^4 chia 3 dư 1=>p-1 chia hết cho 3

p là nt   5=>p lẻ p^4-1 chia hết cho 16

p là NT 5=>p có số tận cùng là 1,3,7,9=>p^4 coa chữ số tận cùng là 1=>p^4 chia hết cho 10

p chia hết cho 3 ;10;16=> chia hết cho 240

2 tháng 1 2016

click chữ xanh nha:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

2 tháng 1 2016

Đây thì chi tiết hơn:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

1 tháng 4 2015

p nguyên tố>5 ==>p lẻ, p không chia hết cho 3 => p^4 chia 3 dư 1 => p-1 chia hết cho 3
p nguyên tố .5 => p lẻ => p^4-1 chia hết cho 16
p nguyên tố .5 => p có tận cùng 1 3 7 9 => p^4 có tận cùng 1 => p^4-1 chia hết cho 10
p chia hết cho 3,10,16 => chia hết cho 240(240 là bội chung nhỏ nhất của 3,10,16)

 

7 tháng 2 2020

Mình sắp ngủ rồi nên giúp bạn câu này, kết bạn nha!

Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240

- Do p>5 nên p là số lẻ

+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)

=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2

p > 5 nên p có dạng

+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3  =>p4 - 1 chia hết cho 3

..............................

Tương tự ta cũng có q4 - 1 chia hết cho 240 . 

Vậy (p4-1)-(q4-1) = p4 - q4 cho 240