Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)=\frac{1.2.3...n\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)}{1.2.3...n}\)
\(=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{1.2.3...n}=\frac{1.3.5...\left(2n-1\right).2^n.\left(1.2.3...n\right)}{1.2.3...n}\)
\(=1.3.5...\left(2n-1\right).2^n⋮2^n\left(đpcm\right)\)
Lúc này dễ dàng tìm được thương của phép chia là 1.3.5...(2n - 1)
a) 9.10n+9.2=9.(10n+2)
ta co : 9.(10n+2) chia het cho 9 vi 9 chia het cho 9 nen tich chia het cho 9
10n=10......0 ( n so 0) ==> 10n +2=10.....2 ( tong cac chu so la 3 nen chia het cho 3)
==> cả 2 điều trên cho ta : 9. (10n+2) chia het cho 27
b) 92n +14 = (92)n +14 = 81n +14
81n=.......1 -> 81n +14 = .....1 +14 =........5 ( chia het cho 5 vi chu so tan cung la 5)
a) \(=2n^3-n^2+2n^2-n+8n-4+5=\left(2n-1\right)\left(n^2+n+4\right)+5\)
vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok)
2n-1 | 1 | 5 |
n | 1 | 3 |
=> n thuộc (1;3)
b) \(n^3-2n^2+2n^2-4n+4n-8+6=\left(n-2\right)\left(n^2+2n+4\right)+6\)
vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8)
c) \(n^3+n^2+n-4n^2-4n-4+3=n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3=\left(n^2+n+1\right)\left(n-4\right)+3\)
vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=>
cái này xét trường hợp nha
n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại)
th2: \(n^2+n+1=3\Leftrightarrow n^2+n-2=0\Leftrightarrow n^2+2n-n-2=0\Leftrightarrow\left(n+2\right)\left(n-1\right)=0\)
=> n=-2(loại) hoặc n=1
\(n^3+n-n^2-1+n+8=\left(n^2+1\right)\left(n-1\right)+n+8\)nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
a) = 2n 3 − n 2 + 2n 2 − n + 8n − 4 + 5 = 2n − 1 n 2 + n + 4 + 5 vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok) 2n-1 1 5 n 1 3 => n thuộc (1;3) b) n 3 − 2n 2 + 2n 2 − 4n + 4n − 8 + 6 = n − 2 n 2 + 2n + 4 + 6 vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8) c) n 3 + n 2 + n − 4n 2 − 4n − 4 + 3 = n n 2 + n + 1 − 4 n 2 + n + 1 + 3 = n 2 + n + 1 n − 4 + 3 vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=> cái này xét trường hợp nha n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại) th2: n 2 + n + 1 = 3⇔n 2 + n − 2 = 0⇔n 2 + 2n − n − 2 = 0⇔ n + 2 n − 1 = 0 => n=-2(loại) hoặc n=1 n 3 + n − n 2 − 1 + n + 8 = n 2 + 1 n − 1 + n + 8 nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
hơi rối một ít k cho mk nha
Ta có: \(A=n^2\left(n-1\right)+2n\left(1-n\right)=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n^2-2n\right).\left(n-1\right)=\left(n-2\right)\left(n-1\right)n\)
Vì \(n-2;n-1\)và \(n\)là ba số tự nhiên liên tiếp nên có ít nhất một số chia hết cho 2, ít nhất một số chia hết cho 3.
Mà ƯCLN(2;3) = 1 và 2.3 = 6
Suy ra: (n - 2)(n - 1)n chia hết cho 6
Vậy \(n^2\left(n-1\right)+2n\left(1-n\right)\)chia hết cho 6