K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

câu c trên mạng có mà :v

14 tháng 5 2019

Gọi x1,x2 là hai nghiệm của pt (1) : x^2 - 97x + a = 0 và x3,x4 là 2 nghiệm của pt (2) : x^2 - x + b = 0 
Theo hệ thức Vi-ét : 
x1 + x2 = 97 và x1.x2 = a 
x3 + x4 = 1 và x3.x4 = b 
Theo đề bài : 
* x1 + x2 = x3^4 + x4^4 
<=> x1 + x2 = (x3^2 + x4^2)^2 - 2.(x3.x4)^2 
<=> x1 + x2 = [(x3 + x4)^2 - 2.x3.x4]^2 - 2(x3.x4)^2 
<=> 97 = (1 - 2b)^2 - 2b^2 
<=> 2b^2 - 4b - 96 = 0 (1) 
* x1.x2 = (x3.x4)^4 
<=> b^4 = a (2) 
Từ (1) được b = 8 hoặc b = -6 
Suy ra a = 4096 hoặc a = 1296 
Thử lại nhận a = 1296 
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20130328075420AAV3DV4

NV
12 tháng 5 2019

a/ \(\Delta=1-4m\ge0\Rightarrow m\le\frac{1}{4}\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)

b/ \(\Delta=97^2-4n\ge0\Rightarrow n\le\frac{9409}{4}\)

Gọi \(a;b\) là các nghiệm của (2) \(\Rightarrow\left\{{}\begin{matrix}a+b=97\\ab=n\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=x_1^4\\b=x_2^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\\ab=\left(x_1x_2\right)^4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2\\ab=\left(x_1x_2\right)^4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=\left(1-2m\right)^2-2m^2=2m^2-4m+1\\ab=m^4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2m^2-4m+1=97\\n=m^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=8\\m=-6\end{matrix}\right.\\n=m^4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=4096\left(l\right)\\n=1296\end{matrix}\right.\)

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

NV
5 tháng 7 2021

a.

Khi \(m=2\) pt trở thành:

\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

b.

Để pt có nghiệm \(x=-1\)

\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)

\(\Leftrightarrow-m^2+m+m^2-1=0\)

\(\Leftrightarrow m-1=0\)

\(\Leftrightarrow m=1\)

c.

Pt tương đương:

\(\left(m^2-m\right)x=-\left(m^2-1\right)\)

\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)

Pt vô nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)

Pt có vô số nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2021

Lời giải:

a. Khi $m=2$ thì pt trở thành:

$2x+3=0\Leftrightarrow x=-\frac{3}{2}$

b. Để pt có nghiệm $x=-1$ thì:

$(m^2-m).(-1)+m^2-1=0$

$\Leftrightarrow m-1=0\Leftrightarrow m=1$

c. 

PT $\Leftrightarrow (m^2-m)x=1-m^2$

Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\) 

\(\Leftrightarrow m=0\)

PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)

Để PT có nghiệm thì: $m\neq 0$

 

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 1:
$2x^4-3x^2-5=0$

$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$

$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$

$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)

$\Leftrightarrow x^2=\frac{5}{2}$

$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 2:

a. Khi $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x^2-x)-(5x-5)=0$

$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$

$\Leftrightarrow m^2+14m+1\geq 0(*)$

Áp dụng định lý Viet:

$x_1+x_2=m+5$
$x_1x_2=-m+6$

Khi đó:
$x_1^2x_2+x_1x_2^2=18$

$\Leftrightarrow x_1x_2(x_1+x_2)=18$

$\Leftrightarrow (m+5)(-m+6)=18$

$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$

$\Leftrightarrow (m+3)(m-4)=0$

$\Leftrightarrow m=-3$ hoặc $m=4$

Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.

 

14 tháng 6 2021

a, Thay m = 1 vào phương trình trên ta được 

phương trình có dạng : \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)

b, Để phương trình có nghiệm kép \(\Delta=0\)

\(\Delta=9-4\left(m-1\right)=9-4m+4=0\Leftrightarrow13-4m=0\Leftrightarrow m=\frac{13}{4}\)

c, Để 2 nghiệm của pt là độ dài hcn khi 2 nghiệm đều dương 

\(\hept{\begin{cases}\Delta=9-4\left(m+1\right)>0\\x_1+x_2=-\frac{b}{a}=3>0\\x_1x_2=\frac{c}{a}=m-1>0\end{cases}\Leftrightarrow1< m< \frac{13}{4}}\)

Diện tích hình chữ nhật là : \(x_1x_2=2\Leftrightarrow m-1=2\Leftrightarrow m=3\)( tmđk )