K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Ta có \(\Delta'=4^2-8\left(m^2+1\right)=-8m^2+8\)

Để pt có nghiệm thì \(-8m^2+8\ge0\Leftrightarrow8m^2\le8\Leftrightarrow-1\le m\le1\)

Nếu x1=x2 thì ( bạn tự làm nhé ! )

Nếu x1 \(\ne\) x2 thì ta có:

\(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)=\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=\left(x_1+x_2\right)^2-x_1x_2\)

Mặt khác theo định lý Viete ta có:\(x_1+x_2=1;x_1x_2=\frac{m^2+1}{8}\)

\(\Rightarrow1-\frac{m^2+1}{4}=1-\frac{m^2+1}{8}\)

\(\Rightarrow\frac{m^2+1}{4}=\frac{m^2+1}{8}\)

Bạn check giúp mik nhé,không biết có nhầm đâu ko nữa

15 tháng 3 2020

\(8x^2-8x+m^2+1=0\) ( 1 )

\(\Delta'=16-8\left(m^2+1\right)=16-8m^2-8=8-8m^2\)

PT ( 1 ) có hai nghiệm x1,x2 \(\Leftrightarrow\Delta'=8-8m^2\ge0\)\(\Leftrightarrow m^2\le1\Leftrightarrow-1\le m\le1\)

Áp dụng hệ thức Vi-ét, ta có : 

\(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=\frac{m^2+1}{8}\end{cases}}\)

Do đó : \(x_1^4-x_2^4=x_1^3-x_2^3\)

\(\Leftrightarrow x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow x_1^3\left(x_1-1\right)-x_2^3\left(x_2-1\right)=0\Leftrightarrow-x_1^3x_2+x_2^3x_1=0\)

\(\Leftrightarrow x_1x_2\left(x_1^2-x_2^2\right)=0\Leftrightarrow x_1x_2\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)

Dễ thấy \(x_1x_2=\frac{m^2+1}{8}>0;x_1+x_2=1>0\)nên \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Từ đó tìm được \(m=\pm1\)