\(3x^3+ax^2+bx+12=0\),a,b lá số nguyên.Biết x=1+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2018

Lời giải:

Đặt \(1+\sqrt{3}=m\).

Ta phân tích đa thức ra như sau:

\(3x^3+ax^2+bx+12=(x+m)(3x^2+nx+p)\)

\(=3x^3+x^2n+xp+3mx^2+mnx+mp\)

\(=3x^3+x^2(n+3m)+x(p+mn)+mp\)

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} n+3m=a\\ p+mn=b\\ mp=12\end{matrix}\right.\). Thay $m=\sqrt{3}+1$ vào hệ trên:

\(\Rightarrow p=6\sqrt{3}-6\); \(n=a-3(1+\sqrt{3})\)

\(\Rightarrow 6\sqrt{3}-6+(1+\sqrt{3})[a-3(1+\sqrt{3})=b\)

\(\Rightarrow -18+(1+\sqrt{3})a=b\)

\(\Rightarrow (1+\sqrt{3})a=b+18\in\mathbb{Z}\)

\(1+\sqrt{3}\not\in\mathbb{Q}\) nên suy ra $a=0$

\(\Rightarrow b=-18\)

Vậy $(a,b)=(0,-18)$

24 tháng 8 2018

Làm sai rồi làm lại đi bác

31 tháng 1 2016

Theo ht Viet :

\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)

Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1) 

(+) tính x1  - x2 

TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)

Rút gọn => x1 - x2 sau đó thay vào (1) 

31 tháng 1 2016

b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM ) 

Xét a khác 0 pt là pt bậc 2 

\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)

LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên 

\(A=\frac{a+1}{a^2+a+1-a^2}=\frac{a+1}{a+1}=1.\)

13 tháng 5 2019

Ta có \(ax^2+bx+c=0\)   vô nghiệm

=> \(\Delta=b^2-4ac< 0\)

=> \(b^2< 4ac\)=> c>0

MÀ \(4ac\le\frac{\left(4a+c\right)^2}{4}\left(hđt\right)\)

=> \(\left(4a+c\right)^2>4b^2\)

Lại có a,b,c>0

=> \(4a+c>2b\)

=> \(a+b+c>3\left(b-a\right)\)=> \(\frac{a+b+c}{b-a}>3\left(đpcm\right)\)

15 tháng 5 2019

Cho mình hỏi chỗ hđt là sao thế?

29 tháng 6 2017

1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)

\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)

\(=32\)

b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)

\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)

29 tháng 6 2017

Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)

\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)

Ta lại có:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)

\(\Rightarrow1< A< 2\)

Vậy \(A\notin N\)

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

16 tháng 3 2017

thay x=1+can 3 vao roi giai phuong trinh 2 an

16 tháng 3 2017

viết chi tiết ra hộ mình với

17 tháng 8 2019

Do a là nghiệm của pt \(x^2-3x+1=0\) nên \(a^2-3a+1=0\)\(\Leftrightarrow\)\(a^2=3a-1\)

\(\Rightarrow\)\(a^4=\left(3a-1\right)^2=9a^2-6a+1=9\left(3a-1\right)-6a+1=21a-8\)

\(P=\frac{a^2}{a^4+a^2+1}=\frac{3a-1}{21a-8+3a-1+1}=\frac{3a-1}{24a-8}=\frac{3a-1}{8\left(3a-1\right)}=\frac{1}{8}\)