Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
Theo ht Viet :
\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)
Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1)
(+) tính x1 - x2
TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)
Rút gọn => x1 - x2 sau đó thay vào (1)
b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM )
Xét a khác 0 pt là pt bậc 2
\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)
LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên
dcv_new
dcv - new
Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)
<=> x = 3 hoặc x = -2
Vậy m = -1 và x2 = - 2
a, Thay \(x_1=3\)vào phương trình , khi đó :
\(pt< =>\)\(3^2+3m+2m-4=0\)
\(< =>5m+5=0\)
\(< =>m=-\frac{5}{5}=-1\)
Thay \(m=-1\)vào phương trình , khi đó :
\(pt< =>x^2-x+2=0\)
\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)
Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)
b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)
Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)
Bạn thiếu đề rồi thì phải !
Ta có \(ax^2+bx+c=0\) vô nghiệm
=> \(\Delta=b^2-4ac< 0\)
=> \(b^2< 4ac\)=> c>0
MÀ \(4ac\le\frac{\left(4a+c\right)^2}{4}\left(hđt\right)\)
=> \(\left(4a+c\right)^2>4b^2\)
Lại có a,b,c>0
=> \(4a+c>2b\)
=> \(a+b+c>3\left(b-a\right)\)=> \(\frac{a+b+c}{b-a}>3\left(đpcm\right)\)
Lời giải:
Đặt \(1+\sqrt{3}=m\).
Ta phân tích đa thức ra như sau:
\(3x^3+ax^2+bx+12=(x+m)(3x^2+nx+p)\)
\(=3x^3+x^2n+xp+3mx^2+mnx+mp\)
\(=3x^3+x^2(n+3m)+x(p+mn)+mp\)
Đồng nhất hệ số:
\(\Rightarrow \left\{\begin{matrix} n+3m=a\\ p+mn=b\\ mp=12\end{matrix}\right.\). Thay $m=\sqrt{3}+1$ vào hệ trên:
\(\Rightarrow p=6\sqrt{3}-6\); \(n=a-3(1+\sqrt{3})\)
\(\Rightarrow 6\sqrt{3}-6+(1+\sqrt{3})[a-3(1+\sqrt{3})=b\)
\(\Rightarrow -18+(1+\sqrt{3})a=b\)
\(\Rightarrow (1+\sqrt{3})a=b+18\in\mathbb{Z}\)
Mà \(1+\sqrt{3}\not\in\mathbb{Q}\) nên suy ra $a=0$
\(\Rightarrow b=-18\)
Vậy $(a,b)=(0,-18)$
Làm sai rồi làm lại đi bác